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ABSTRACT 

The Start checkpoint regulates cell cycle commitment and associated transcription in the 

budding yeast, Saccharomyces cerevisiae. It was previously shown that commitment to 

cell division corresponds to activating the positive feedback loop of G1 cyclins controlled 

by the transcription factors SBF and MBF. Around this pivotal cell cycle event, over 300 

genes (G1/S regulon) are expressed to facilitate the G1/S transition. Despite its 

importance, little was known about distinct temporal regulation within the G1/S regulon. 

We found that SBF and MBF target genes have a well-defined distribution 

of transcriptional activation times. We also showed that activation of G1 cyclins 

precedes the activation of the bulk of the G1/S regulon, which we named 'feedback-first' 

regulation. In budding yeast, feedback-first regulation ensures that commitment to cell 

division occurs before large-scale changes in transcription. Thus, the transition can be 

viewed as a two-step process whereby the decision to divide precedes synthesis of the 

cellular machinery required for division. Furthermore, we found that feedback-first 

regulation is conserved in the related yeast S. bayanus as well as human cells. This 

finding highlighted the importance of understanding the molecular mechanisms through 

which co-regulated genes can have distinct activation dynamics. We showed that timing 

is partially explained by the combinatorial use of SBF and MBF transcription factors, 

which implement a logical OR function for gene activation. In addition to combinatorial 

use of transcription factors, we analyzed genome-wide chromosome conformation 

capture data to examine the potential link between the timing of gene expression and 3-D 

genome architecture. The early-activated genes of the G1/S regulon are significantly 

enriched for the number of physical contacts to the rest of the genome. Further analysis 

revealed two main clusters, whose interactions co-vary and whose activation time 

distributions are distinct. Taken together, these our work explains a significant amount of 
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timing variation within cell cycle-dependent gene expression. Thus, we concluded that 

the cell utilizes both genome architecture and the combinatorial use of transcription 

factors to implement feedback-first regulation ensuring that commitment to cell division 

precedes genome-wide cell cycle-dependent transcription.  
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INTRODUCTION 

MOTIVATION 

Before explaining the details of my research, I would like to explain my motivation to 

study life science as a physicist. My physics training inculcated an urge to identify a 

unifying framework to explain widely varied phenomena. Physics has a long tradition of 

beginning with a purely empirical and descriptive view of the world and using these 

observations to build a theoretical framework that allows prediction of the properties (and 

even existence) of a wide variety of physical phenomena. In biosciences, however, due to 

technological limitations and the very complex nature of life, we have been gathering 

information at the empirical regime of knowledge with few theoretical frameworks that 

provide predictive power. However, many technical advances, such as such as 

fluorescence microscopy, data storage and processing, and deep sequencing, are rapidly 

lowering the cost of data acquisition and analysis. Therefore, I would like to utilize these 

technological advances and quantitative approaches to develop an predictive framework 

and identify the fundamental principles underlying biological phenomena. Let me briefly 

explain my approach to the biological sciences with an analogy: 

Imagine that intelligent extraterrestrials on Mars receive the rover robot called Curiosity 

and they want to understand how that machine works (Figure 1). If we assume that they 

have no idea about our history of technology, we can say that the Martians should use 

multiple research stages to understand the weird object they just received. The first step 

will be to investigate the chemical composition of the robot’s materials. Based on their 

chemical and electrical properties, they might proceed to characterize the components 

and their individual behavior. However, this will not suffice to understand how the robot 

works. Another layer of research will be conducted to conceptualize the relationship 

between individual components, which would reveal network diagrams for each robot 

function. Nevertheless, robots employ a large number of both elements and connections 
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to function. Therefore the resulting network diagram showing all the connections 

between the elements will look like a hairball. By looking at this map of interactions, the 

Martians might think that they understand the robot. But this delusion will only be valid 

until they see another robot (like that which will be sent in 2020 for the Mars rover 

mission, Figure 2). Once they notice that the wiring and circuit elements are very 

different, their claim that they understand robots will be reduced to merely understanding 

the Curiosity model robot. Hence, to understand robotics more generally, another layer of 

research revealing principles such as Kirchhoff laws and control theory will be necessary. 

Discovering the working principles or design principles of robots will allow the Martians 

to identify the robots’ errors, fix them and even to make their own robots.  

 

Figure 1: Schematic of the Curiosity rover identifying different components (adapted from 
http://www.theregister.co.uk/2012/08/08/mars_probe_cpu/) 
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As for this example of dissecting robotics, multiple layers of research are also required to 

understand living organisms. For instance, understanding how cells work necessitates 

identification and characterization of nucleic acids and proteins, finding their interactions 

and deciphering their signaling networks. Nevertheless, in addition to elucidating such 

schematics, we need to learn the general principles governing cellular signaling and 

information processing in order to deepen our understanding of nature, to increase the 

predictive power of our theories, and to improve our ability to design synthetic circuits 

for medical and engineering purposes.  

Use of new quantitative approaches to understand the principles behind cellular 

phenomena is a growing area of biological research. For example, cells may undergo 

irreversible changes in their states. Such cellular transitions have been observed in such 

varied circumstances as bacterial sporulation and vertebrate stem cell differentiation. 

Another prominent example of an irreversible cellular transition is the point of 

commitment to the mitotic cell cycle in budding yeast, which forms the subject of this 

dissertation. Yeast commit to division within the G1 phase of the cell cycle; after cell 

division, but before initiation of DNA replication. The commitment point was apparently 

embedded within the activation of the expression of the largest cell cycle-dependent 

regulon. Indeed, 5-10% of all yeast genes are activated near the commitment point. 

Broadly speaking, my work examines the commitment transition at an unprecedented 

temporal resolution to reveal an exquisite pattern within the timing of transcriptional 

activation. My work reveals novel functions for fine-tuned transcriptional order and 

begins to address its molecular underpinnings.  
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Figure 2: Image illustrating the concept of NASA's unnamed 2020 Mars mission rover (adapted from 
http://en.wikipedia.org/wiki/). 

BACKGROUND  

Order may be produced in a sequence of biochemical events through feedback control 

mechanisms or substrate-specific chemical kinetics. In the cell cycle, regulatory 

checkpoints ensure the proper order of many essential events through feedback control. 

DNA replication must be finished and damage repaired before mitosis, while anaphase is 

initiated only after complete spindle assembly (Morgan 2007). Checkpoints use 

designated regulatory molecules to restrain cell cycle progression until a set of criteria are 

satisfied (Hartwell and Weinert 1989). However, order without checkpoint control is 

observed in Xenopus embryos as cell cycle events are entrained by oscillations in cyclin 

dependent kinase (CDK) activity. Furthermore, addition of CDK substrates to Xenopus 

egg extracts in different stages of mitosis revealed that the order of substrate 

phosphorylation is independent of cell cycle phase (Georgi, Stukenberg et al. 2002).  

Thus, temporal order of phosphorylation in mitosis is likely the result of substrate-
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specific kinetics. Here, we investigate the integration of chemical kinetics and feedback 

control at the Start transition in budding yeast.  

The Start checkpoint, between cell division and DNA replication, prevents premature cell 

cycle entry (Hartwell, Culotti et al. 1974). Prior to Start, cells integrate internal (e.g., cell 

size) and external (e.g., mating pheromone) signals to make an all-or-none decision to 

divide. Beyond Start, cells are committed to divide regardless of changes in extracellular 

signals. Passage through Start corresponds precisely to the activation of the G1 cyclin 

positive feedback loop (Doncic, Fettig and Skotheim data not published). Thus, Start is a 

member of a growing list of cellular and developmental transitions driven by positive 

feedback (Pomerening, Sontag et al. 2003; Xiong and Ferrell 2003; Holt, Krutchinsky et 

al. 2008; Justman, Serber et al. 2009; Lopez-Aviles, Kapuy et al. 2009). 

Positive feedback at Start is initiated by the G1 cyclin, Cln3 in complex with the cyclin 

dependent kinase Cdc28 (Figure 3). The primary target of Cln3 is the transcriptional 

inhibitor Whi5, whose inactivation is rate-limiting for the expression of the G1/S regulon 

(Costanzo, Nishikawa et al. 2004; de Bruin, McDonald et al. 2004). Cln3-Cdc28 

phosphorylates and initiates Whi5 inactivation, which allows some transcription of two 

additional G1 cyclins, CLN1 and CLN2 (Tyers, Tokiwa et al. 1993). The downstream G1 

cyclins then complete the positive feedback loop through the inactivation and nuclear 

exclusion of Whi5 and the full activation of the transcription factors SBF (Swi4-Swi6) 

and MBF (Mbp1-Swi6) (Andrews and Herskowitz 1989; Nasmyth and Dirick 1991; 

Koch, Moll et al. 1993; de Bruin, McDonald et al. 2004; Skotheim, Di Talia et al. 2008).  
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Figure 3: Schematic diagram of the G1/S transition.  

 

Surprisingly, the transcription factors at the center of the positive feedback loop, SBF and 

MBF, are also responsible for the transcription of over 200 additional genes (Ferrezuelo, 

Colomina et al. 2010). Indeed, cell cycle commitment appears to coincide with the 

coordinated transcriptional activation of approximately 5% of all genes (Spellman, 

Sherlock et al. 1998). Although Whi5 phosphorylation is rate-limiting for activation of 

positive feedback, it is also likely to be rate limiting for the transcription of all SBF 

regulated genes due to the direct Whi5-SBF interaction (de Bruin, McDonald et al. 2004). 

The concurrent activation of the related heterodimeric transcription factor MBF also 

requires CDK activity, possibly through phosphorylation of the shared component Swi6 

(Wijnen, Landman et al. 2002). Thus, given the integrated nature of the regulatory circuit 

and the ability of the upstream cyclin Cln3 to activated SBF- and MBF-dependent 

transcription in cln1∆ cln2∆ cells (Dirick, Bohm et al. 1995; Stuart and Wittenberg 

1995), it is unclear if genome-wide changes in transcription occur after commitment to 

division. 

Although G1/S transcription is largely regulated by SBF and MBF, single-cell studies 

have revealed significant differences in transcriptional activation of the 3 regulon 
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members CLN2, RAD27 and RFA1 (Skotheim, Di Talia et al. 2008). A rapid, feedback-

driven increase in CDK activity drives the coherent and nearly simultaneous induction of 

these three genes in WT cells. However, significant differences in transcriptional 

activation timing are revealed in cln1∆ cln2∆ cells lacking positive feedback. CLN2 is 

induced earlier than two other regulon members, which suggests a model in which full 

regulon expression would only occur after feedback loop activation to avoid detrimental 

transcription in cases where the cell does not commit to the mitotic cell cycle. Therefore, 

we hypothesized that the G1 cyclins CLN1 and CLN2, involved in positive feedback, 

would be activated earlier than other genes in the G1/S regulon to ensure that 

commitment precedes the genome-wide change in transcription. This served as the entry 

point for my investigations. 

OVERVIEW 

The first chapter introduces the concepts and techniques that are used throughout the 

dissertation. Hence, it encompasses the basics of transcriptional dynamics and the 

technologies we use to examine it, e.g., microarrays and computational approaches to 

detect the transcriptional activation timing. The second chapter reports the observation 

that the two G1 cyclins, namely CLN1 and CLN2, are among the earliest activated genes 

of the G1/S regulon, which supports the hypothesis that genome-wide changes in 

transcription occur only after a cell is committed to division. By comparing sets of genes 

regulated by SBF, MBF, or by both factors together, we found that both transcriptional 

activation and inactivation can be approximated as logical OR functions (Chapter 3). 

Such combinatorial use of transcription factors partially explains the temporal variation 

of transcriptional activation. Given the heterogeneous composition of the nucleus, we 

analyzed a genome-wide chromosome conformation capture dataset (Duan et al. 2010) 

and showed that nuclear compartmentalization may affect the transcriptional activation 

timing (Chapter 4).  Furthermore, CLN1 and CLN2 remain among the earliest activated 

cell cycle regulated genes in the related yeast, S. bayanus, which has significantly 

diverged gene expression (Tirosh, Weinberger et al. 2006; Guan, Dunham et al. 2010). A 
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similar analysis of human tissue culture cells revealed that functionally analogous 

feedback loop components E2F1, Skp2, and the cyclins E1 and E2 (Blagosklonny and 

Pardee 2002; Yung, Walker et al. 2007) are among the earliest activated cell cycle 

regulated targets of the E2F family of transcription factors (Chapter5). Taken together, 

our results demonstrate that feedback-first regulation, which places genome-wide 

changes in transcription downstream of positive feedback-dependent cell cycle 

commitment, is a common feature of G1/S control across eukaryotes. In addition, we 

have begun to unravel the molecular mechanisms underlying the temporal order of 

transcriptional activation.  
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CHAPTER1 : QUANTIFYING TRANSCRIPTIONAL DYNAMICS 

MICROARRAYS 

Monitoring the global-scale activity is essential for the quantitative studies of complex 

systems, such as cells. A microarray is an array of many spots that contain covalently 

bound single stranded DNA pieces, which revolutionized the molecular biology studies 

by introducing the genome-wide measurements (Schena, Shalon et al. 1995; DeRisi, 

Penland et al. 1996; Spellman, Sherlock et al. 1998; Hoheisel 2006). Microarray 

measurements are based on the hybridization of single stranded complementary DNA 

(cDNA) onto the probe oligo DNA. The higher the complementary base pairs, the 

stronger the strands form non-covalent bonds. A washing step is necessary to purify the 

array from the non-specifically bound sequences. Hence, measuring the intensity of 

fluorescence generated by the fluorescently labeled hybridized cDNAs quantifies the 

expression level relative to the intensity measurement of the same array under another 

condition (Figure 1-1).  

One of the many widespread applications of microarrays is the quantification of the gene 

expression, i.e., amount of mRNA. Gene expression is a crucial step in the central dogma 

as many of the cellular functions are regulated at the transcriptional level. High-

throughput monitoring the transcriptional activity using microarrays includes 

computational analysis of the resulting genome-scale transcription data. The main 

challenge on the analysis side is often to distinguish between the real signal and the noise. 

DeRisi and coworkers defined an empirical criterion for a significant increase using 

concordance correlation analysis, i.e. reproducibility of the data (DeRisi, Penland et al. 

1996). They reported that a 2-fold variation is usually sufficient to classify a data point as 
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a significant signal, which has been commonly misinterpreted as a universal threshold in 

microarray experiments (Hoheisel 2006).  

 

Figure 1-1: A simplified scheme showing an example microarray experiment procedure (adapted from 
http://www.scq.ubc.ca/spot-your-genes-an-overview-of-the-microarray/).  

 

In microarray time-course experiments, it is easier to overcome signal-to-noise problems 

because adjacent time points can provide similar information as biological replicates if 

one expects a smooth signal. Such a signal can be expected if the time scale of changes to 

gene expression is larger than the time scale of time-course sampling. Therefore, 
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applying an appropriate curve fitting to the expression profiles can identify noisy data 

points, which may subsequently be excluded from the analysis.  

Microarray time-course experiments are usually used to observe the temporal behavior of 

gene expression. A common way to determine the expression timing of a gene is the 

clustering of similar expression profiles (Spellman, Sherlock et al. 1998; Peddada 2002; 

Kim and Kim 2007; Orlando, Lin et al. 2008). However, clustering loses information 

about the temporal order of gene activation. Another way to temporally locate gene 

activity is by detecting the peak time of an expression profile. However, this denotes the 

inactivation of gene expression rather than the time of activation. Therefore, a more 

rigorous approach is required to analyze the dynamics of a genome-wide transcriptional 

activation. 

ALGORITHM TO DETECT TRANSCRIPTIONAL ACTIVATION TIME 

In order to robustly identify the time of gene activation, we developed a novel algorithm 

to determine the time at which a specific gene is induced during the cell cycle. Although 

manually identifying activation points of cell cycle regulated genes is not difficult, we 

developed an automated algorithm to both avoid potential bias and increase throughput. 

Our algorithm is robust to noisy data, which can produce incorrect estimates for the 

activation time. We normalized all the time series and assumed that the time scale for 

changing transcript concentration is greater than 10 minutes. We therefore remove data 

points associated with large concentration changes on shorter timescales. Data points 

further than 20% of the dynamic range of the time series (maximum – minimum) from 

adjacent points are removed. We discarded time series with two or more removed data 

points. The mRNA level is then estimated using smoothing-splines. We selected the point 

where the 1st derivative first reaches 10% of its maximum. The smoothing parameter is 

optimized to minimize variation in biological replicates and the 1st derivative method is 

shown to be superior in estimating activation times relative to other methods (Figure 1-2).  
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The change in concentration of an mRNA species, dX(t)/dt, depends on a balance 

between the transcription rate, r(t), and degradation rate, λX(t), so that 

 

 

Here, we want to find the time point where r(t) increases rapidly, i.e., the activation time. 

For cell cycle dependent changes in r, the timescale of mRNA degradation 

(~20min)(Grigull 2004) is more rapid than the cell cycle timescale (>90 minutes) so that 

we may neglect degradation kinetics around the time of gene activation (λX(t) << r) and 

consider the point where dX/dt increases above a threshold as the activation point (r > 

threshold). Hence, we define the activation time as the time point where the first 

derivative of the expression profile, dX/dt, reaches the defined threshold, which we take 

as 10% of the maximum value of the 1st derivative within a given time series. 

Alternatively, we can consider the value where the second derivative d2X/dt2 is maximum 

as the activation point, i.e., where the increase in transcription rate is most rapid (2nd 

derivative method)(Skotheim, Di Talia et al. 2008). Since both the 1st derivative and 2nd 

derivative can be used to estimate activation, we must rationally choose between 

methods.  

Since noisy data can produce incorrect estimates for the activation time, we require a 

systematic method to exclude outlying data points and discard low-quality time series. 

Because the time scale for changing transcript concentration is greater than 10 minutes, 

we remove data points associated with large concentration changes on shorter time 

scales. If a data point is more than 20% of the dynamic range of the time series 

(maximum – minimum), away from both the adjacent points, it is removed. We discarded 

time series where two or more points removed or missing from the original data.  
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To estimate X(t), we applied smoothing-spline function by using the Curve Fitting 

Toolbox in MATLAB.  

CHOOSING THE SMOOTHING PARAMETER 

For both methods of detecting the activation time, we optimized our smoothing spline. 

The smoothing spline, f, minimizes the following function:  

 

 

 

where x(j) is the time at the jth time point, n is the number of data points, p is the 

smoothing parameter, y is the data value, D2f(t) is the second derivative of the 

smoothing fit function.  

The smoothing parameter can be chosen between 0 and 1. For lower values, the fit over-

smoothes and approaches a linear fit, which does not contain information about the 

activation time. For higher values, p~1, the fit just connects all the data points and is too 

sensitive to small experimental errors. This leads to inconsistent results among 

experimental replicates. Therefore, we can test the smoothing parameters by comparing 

the standard deviations for the distributions of the activation times from a set of 

experimental replicates.  

To identify the best method and its associated optimal smoothing parameter, we produced 

a training set of data, which is composed of time series containing a step-wise change in 

transcription rate, r, at time t0
 and a small initial mRNA concentration, X0.  The analytical 

solution to equation 1 is as follows: 
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When we introduce a uniformly distributed noise function ρ(t), multiplied by a tunable 

noise coefficient η, the expression profile becomes:  

 

 

  

Good activation time detection will yield little variation in activation times around t0 in 

spite of the noise. Therefore, we tested the 1st and the 2nd derivative methods for a range 

of smoothing parameters (spanning between 0.001 and 0.87) and noise coefficients (from 

0.05 to 5) (Figure 1-2B).   
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We set the activation time for the simulated data to t0=13 min. with an initial transcript 

level X0 = 1 (a.u.), and tested the training data for a range of noise levels (η ∈ [0.05-5]). 

The mean activation time of the 1st derivative method converged to the correct activation 

time (±1min) for the smoothing parameter values greater than 0.2 with a slowly 

increasing variance of ~5 min (Figure 1-2C). However, the mean activation time for the 

2nd derivative method hits the defined activation time 13 min only for smoothing 

parameter values between 0.001 and 0.03meanwhile the variation changes from 4 to 8 

min and is larger than for the 1st derivative method. For greater smoothing parameters, the 

2nd derivative algorithms becomes more unreliable and mean activation time converges to 

20 with the variation 9.  Therefore, we choose 0.25 as a smoothing parameter and use the 

1st derivative method in all our analysis.  
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Figure 1-2: A) Activation time of a gene can be calculated using the 1st derivative or the 2nd derivative. 
(B) Simulated data with three different noise levels (red dots) are plotted for three different smoothing 
parameters. Blue curves show the smoothing spline fit to the data, f(t). (C) The mean (blue) and the 
standard deviations (red) of the activation times of training set are shown for the 1st derivative method 
(upper panel), and for the 2nd derivative method (lower panel). We set the activation time to 13 min, shown 
as the horizontal line.  The grey area denotes the activation time t0 +\- 1min region. 
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CHAPTER2 : FEEDBACK-FIRST REGULATION 

Single-cell studies have revealed significant differences in transcriptional activation of 

the 3 G1/S genes CLN2, RAD27 and RFA1 (Skotheim, Di Talia et al. 2008). A rapid, 

feedback-driven increase in CDK activity drives the coherent and nearly simultaneous 

induction of these three genes in WT cells. However, significant differences in 

transcriptional activation timing are revealed in cln1∆ cln2∆ cells lacking positive 

feedback. CLN2 is induced earlier than two other regulon members, which suggests a 

model in which full regulon expression would only occur after feedback loop activation 

to avoid detrimental transcription in cases where the cell does not commit to the mitotic 

cell cycle. Therefore, we hypothesized that the G1 cyclins CLN1 and CLN2, involved in 

positive feedback, would be activated earlier than other genes in the G1/S regulon to 

ensure that commitment precedes the genome-wide change in transcription. 

DEFINING THE REGULON 

To test our model that induction of positive feedback and concomitant cell cycle 

commitment precedes large-scale transcriptional change, we first need to accurately 

define the G1/S regulon. We are interested in the set of genes whose transcription is 

initiated due to increasing cyclin activity rather than upstream cyclin-independent 

processes (MacKay, Mai et al. 2001; Di Talia, Wang et al. 2009).  

The set of cell cycle regulated genes was defined as the 800 genes with the largest 

amplitude mRNA concentration oscillation through the cell cycle (Spellman, Sherlock et 

al. 1998). To identify the set of G1 cyclin regulated genes, we relied on a second 

experiment by Spellman et al (1998), which identified a set of genes responding to 

exogenous Cln3 induction in G1 arrested cln1∆ cln2∆ cln3∆ cells. We took the top 413 as 
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the set of G1 cyclin inducible genes. The intersection of these two sets defines the 362-

gene regulon (Figure 2-1B; Appendix D). 
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Figure 2-1: Positive feedback precedes genome-wide change in transcription at G1/S in S. cerevisiae. (A) 
Schematic diagram of the G1/S transition. (B) The G1/S regulon is defined as the intersection of the set of 
cell cycle regulated genes with the set of Cln3-inducible genes.  (C) Synchrony of cdc20∆ GALLpr-CDC20 
metaphase block-release from Di Talia et al (2009). (D) A novel algorithm is applied to a smoothing-spline 
fit to detect activation of CLN2 transcription in 7 mitotic block-release datasets. The standard deviation 
σ and the standard error of the mean (SEM) are calculated for each gene. (E) 7 genes in the G1/S regulon 
are activated at different times; data shown from a single dataset. The vertical and horizontal bars indicate 
the activation time and its SEM respectively. (F) Gene activation time correlation between two of the 7 
datasets (R2 = 0.59). Histogram (G) and corresponding cumulative distribution (H) of mean activation times 
for the 7 mitotic block-release datasets. CLN1 and CLN2, two genes responsible for positive feedback, are 
among the earliest-activated genes. NRM1, a negative regulator of MBF, is activated later. 

We analyzed 7 previously published microarray time-course datasets with 5-minute 

temporal resolution (Di Talia, Wang et al. 2009). All experiments were performed on 

cdc20∆ GALLpr-CDC20 cells that were synchronized by mitotic arrest. Cells were 

released by switching the media containing galactose resulting in CDC20 expression and 

a synchronous first cell cycle (Figure 2-1C). 

Figure 2-1D shows the activation times for 7 independent CLN2 expression profiles and 

their standard deviation and standard error of the mean. Because we have multiple time-

courses, our error in estimating the activation time is low, e.g., for CLN2 we find the 

activation time to be 13 minutes after galactose addition with a standard deviation of 1.9 

minutes and a standard error of the mean of 0.7 min. For genes within the G1/S regulon, 

we find that the average standard deviation is 4.7 min and the average standard error of 

the mean is 2.1 min. Despite regulation by the same transcription factors, the activation 

times of G1/S regulon members has a defined distribution (mean = 17.2 minutes; 

standard deviation = 5.9 minutes; Figure 2-1D-E, Figure 1-2D; Table 2-1: Correlation 

coefficients (upper-right triangle, beige) and  p-values (lower-left triangle, purple) for all 

pair-wise comparisons of the distribution of activation times for the 7 mitotic block-

release experiments.).  

 To test our model that feedback activation precedes regulon induction, we averaged the 

activation times from all 7 datasets for each gene (Figure 2-1G-H). These results were 

consistent with induction times measured in rtPCR time-courses (Figure 2-2).  The 

positive feedback genes CLN1 and CLN2 are activated significantly earlier than the bulk 
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of the G1/S regulon. Indeed, within error, CLN1 is the earliest activated gene, 5 minutes 

earlier than CLN2, suggesting a different temporal role even though these two genes are 

generally thought to be functionally redundant. However, it has been shown that CLN1, 

but not CLN2, transcription affects cell size (Flick, Chapman-Shimshoni et al. 1998), 

which our data suggests is due to timing. We note that for the feedback-first model to 

work it is sufficient to express either G1 cyclin, not necessarily both, prior to the majority 

of the regulon. Thus, we see that induction of the G1 cyclin positive feedback loop, 

which coincides with cell cycle commitment, precedes large-scale changes in the 

transcriptional program.  

Interestingly, NRM1, the negative feedback element responsible for inactivating MBF 

regulated genes (de Bruin, Kalashnikova et al. 2006), is activated 15 min later than CLN1 

(Figure 2-1G-H) even though both genes are MBF targets (Ferrezuelo, Colomina et al. 

2010). Thus, distinct temporal regulation allows positive feedback sufficient time for 

regulon transcription prior to NRM1-dependent inactivation. 
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Figure 2-2: Pheromone and G1-cyclin block-release experiments. Gene expression measured using real 
time PCR corroborates our conclusions about gene activation timing from microarray analysis. The 3 
curves on the RHS are from a cln1∆cln2∆cln3∆ MET3pr-CLN2 G1 block-release time course. Plot in 
upper RHS corresponds to the pheromone block experiment. 
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ACTIVATION TIMES OF G1/S REGULON ARE REPRODUCIBLE 

 

 

Figure 2-3: The scatter plots of each dataset pair are shown in a matrix. Histograms of activation times of 
each dataset are plotted diagonal. Dataset1: WT, Dataset2: ash1Δ,Dataset3: ace2Δ, Dataset4: ash1Δ 
ace2Δ, Dataset5: ASH1*, Dataset6: ACE2-G128E, Dataset7: ASH1* ACE2-G128E 

 
We applied our algorithm to the 7 time-course microarray data published by Di Talia et 

al. (2009). Correlation coefficients, R, are calculated for all pair-wise comparisons by 

using the following equation: 
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where E is the expected value operator and µ  is the mean value, i.e. µX = EX, and σ  is 

the standard deviation. The correlation coefficients are shown in the upper right triangle 

in the Table 2-1. The p-values, calculated using kstest, indicate that the activation times 

of the G1/S regulon members are consistent among all datasets (Table 2-1).  

Table 2-1: Correlation coefficients (upper-right triangle, beige) and  p-values (lower-left triangle, purple) 
for all pair-wise comparisons of the distribution of activation times for the 7 mitotic block-release 
experiments. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 

Dataset 1    0.72 0.6 0.59 0.62 0.69 0.56 

Dataset 2 2.90E-19  0.72 0.57 0.48 0.59 0.51 

Dataset 3 2.30E-11 6.64E-19  0.46 0.55 0.76 0.61 

Dataset 4 1.50E-10 1.69E-10 9.62E-07  0.40 0.45 0.21 

Dataset 5 5.03E-10 3.77E-06 8.26E-08 4.00E-04  0.57 0.35 

Dataset 6 5.89E-16 9.22E-12 1.00E-20 2.13E-06 2.08E-08  0.64 

Dataset 7 4.02E-09 5.86E-08 2.78E-11 3.00E-02 1.80E-03 4.62E-12  

 

DELAYED POSITIVE FEEDBACK DOES NOT RESCUE CLN1∆ CLN2∆ CELLS 

 

To examine the functional consequences of feedback timing, we integrated a CLN2 allele 

regulated by the NRM1 promoter into a cln1∆ cln2∆ cell containing MET3pr-CLN2, 

CLN2pr-GFPpest and RAD27-mCherry. Cells were grown overnight on media lacking 

methionine (MET3pr-CLN2 on) prior to switching to media containing methionine 

(MET3pr-CLN2 off) for single-cell analysis of one cell cycle (Skotheim, Di Talia et al. 

2008). Cells exhibited similarly incoherent gene expression (time between CLN2pr and 

RAD27pr induction) and cell size defect as cln1∆ cln2∆ cells (Figure 2-4A-B; Figure 

7 
 

Activation Times of the G1/S Regulon 
Table S1: List of genes selected as G1/S regulon 

(see the attached spreadsheet file) 
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Figure S4: The scatter plots of each dataset pair is shown in a matrix. Histograms 
of activation times of each dataset are plotted diagonal. Dataset1: WT, Dataset2: 
ash1!,Dataset3: ace2!, Dataset4: ash1! ace2!, Dataset5: ASH1*, Dataset6: ACE2-
G128E, Dataset7: ASH1* ACE2-G128E 

 
 
We applied our algorithm to the 7 time-course microarray data published by 
Di Talia et al. (2009). Correlation coefficients, R, are calculated for all pair-
wise comparisons by using the following equation: 
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2-5). However, the fitness defect was partially reduced (Figure 2-4C). This indicates the 

importance of running the positive feedback loop from an early activated promoter.  

 

Figure 2-4: Phenotypic consequences of delayed positive feedback. (A) Time course of incoherent RAD27-
mCherry and CLN2pr-GFP expression in a single cln1∆ cln2∆ NRM1pr-CLN2 cell. (B) Time difference 
between CLN2pr and RAD27pr induction measured as in Skotheim et al (2008); cells not showing 
significant induction of either promoter were omitted from the analysis. (C) A cumulative plot for the first 
bud emergence measured from cell division. Solid and dashed lines correspond to mother and daughter 
cells respectively. Inset shows fraction of G1-arrested cells. 
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Figure 2-5: A) Time-lapse microscopy images of the cells having genotype NRM1pr-CLN2 cln1∆ cln2∆ are 
shown. By using an image segmentation program, the cells are automatically detected (red contour). The 
promoter activations are monitored by fluorescence intensities (GFP for CLN2 and mCherry for RAD27). 
B) Delayed positive-feedback cells (cln1Δ cln2Δ NRM1pr-CLN2) have a similar cell size phenotype to 
cln1Δ cln2Δ cells. Cells are grown in log phase and cell size is measured using a Coulter Counter. 

FEEDBACK-FIRST REGULATION IS ROBUST TO CHANGES IN CARBON 

SOURCE AND SYNCHRONIZATION METHOD 

 

To further test our feedback-first model, we examined the effects of varying carbon 

source and synchronization method, which are both known to affect gene expression 

(Flick, Chapman-Shimshoni et al. 1998; Levy, Ihmels et al. 2007; Brauer, Huttenhower et 
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al. 2008). We performed a micro-array time course after synchronizing cells with mating 

pheromone in media with either glucose or galactose. Carbon source does not have a 

large effect as differences in activation times were similar to experimental replicates 

(Figure 2-6A). 

To analyze the effect of synchronization method, we examined cells lacking endogenous 

G1 cyclins (cln1∆cln2∆cln3∆) but containing an integrated MET3pr-CLN2 construct (see 

methods). Cells were arrested in G1 before being transferred to media with a low level of 

methionine to activate exogenously controlled CLN2 transcription at physiological levels. 

We then compared activation times between the cyclin blocked and the pheromone 

blocked cells (Figure 2-6B). Our three G1 block-release experiments varying carbon 

source and synchronization method produced similar timing profiles. 

We examined the distribution of activation times pooled from the 3 separate G1 block 

experiments (Figure 2-6C). Although transcriptional order is affected by the arrest phase 

(Figure 2-6D, Figure 2-7), CLN1 is activated at the first possible time-point (5 minutes 

after release) in agreement with the feedback-first model. 
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Figure 2-6: Synchronization phase, but not carbon source or synchronization method, affects gene 
activation timing. (A) Bud-index measurements and gene activation time correlation for G1 pheromone 
block-release time-course microarray experiments with glucose or galactose carbon sources. (B) Bud index 
for G1 block-release using cln1∆ cln2∆ cln3∆ MET3pr-CLN2 cells and correlation of gene activation times 
for pheromone and G1 cyclin block-release experiments. (C) Significant correlation between the 3 G1 
block-release datasets allows them to be pooled together to produce a histogram of activation times for the 
G1/S regulon again demonstrating feedback-first regulation. (D) Activation times from G1 and mitotic 
block-release experiments are not correlated. 
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Figure 2-7: Activation time analysis of functional categories of G1/S regulon in Mitotic and G1 block-
release microarray experiments, respectively. Cumulative probability of activation (A), (C) and mean 
activation time (B), (D)  of each functional subgroup with standard error of the mean and the p- values of 
pair-wise comparisons are shown. 
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GENE ACTIVATION IS CORRELATED IN FREELY CYCLING CELLS AND 

MITOTIC BLOCK-RELEASE EXPERIMENTS 

 

Since transcriptional order changes with the arrest phase, we decided to investigate which 

block is more similar to the free-running cell cycle using time-lapse fluorescence 

microscopy (Skotheim, Di Talia et al. 2008). We analyzed protein accumulation in 11 

strains expressing C-terminal GFP fusion proteins from the endogenous loci 

(Ghaemmaghami, Huh et al. 2003), and two strains containing an integrated CLN1 or 

CLN2 promoter driving the expression of a destabilized VenusPEST(Mateus and Avery 

2000). We selected this group of strains to span the distribution of activation times. 

Automated cell segmentation allows us to analyze the fluorescent intensity change in 

single-cells through the cell cycle (Figure 2-8A). We detected activation timing relative 

to bud emergence and analyzed more than 50 cells of each strain (Figure 2-8B-C; Table 

2-2). We found that the mean single-cell activation times in the unperturbed cell cycle 

correlated more with the mitotic block experiments (R2 = 0.72; Figure 2-8D) than the G1 

block experiments (R2 = 0.21; Figure 4E). This result also implies that the order of 

mRNA transcription is largely reflected in protein accumulation. Thus, the mitotic block 

experiments are more representative of freely cycling cells.  
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Figure 2-8: Gene activation is correlated in the free running cell cycle and mitotic block-release 
experiments. (A) Composite phase and fluorescence images of CLN2pr-VenusPEST cells. Venus yellow 
fluorescent protein contains a destabilizing PEST sequence. The red contour denotes the cell boundary 
detected by automatic segmentation. Gene activation time calculated from fluorescence intensity time 
courses aligned at bud emergence for (B) CLN2pr-VenusPEST and (C) HTA2-GFP cells. Gene activation 
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times ± SEM for 10 strains containing GFP-fused proteins and 2 strains containing promoter-Venus 
constructs expressed at the endogenous locus correlated with mean activation times from microarray time-
courses for cells synchronized at mitosis (D) or G1 (E). 

Table 2-2: Activation times (minutes) for protein accumulation are measured relative to bud emergence 

Marker Mean 
(min) 

Standard error 
(min) 

Standard deviation 
(min) N 

CRH1-GFP -22.4 1.1 7.6 46 
HTB2-GFP -12.0 0.8 5.1 38 
NRM1-GFP -11.6 1.2 6.8 33 
RNR1-GFP -22.0 2.7 8.1 32 
PMT1-GFP -3.7 0.9 3.8 18 
GAS1-GFP -22.8 1.3 7.0 30 
SVS1-GFP -17.6 1.5 6.4 18 
HTA2-GFP -8.3 0.8 5.8 52 
CLN1pr-VenusPEST -22.5 1.1 7.0 37 
CLN2pr-VenusPEST -23.4 1.1 6.9 20 
MNN1-GFP -12.7 1.6 8.1 25 
 

Since transcription activation times change with the phase of the block used, we decided 

to analyze previously published cell cycle synchronized microarray time courses 

(Spellman, Sherlock et al. 1998; Pramila, Wu et al. 2006; Orlando, Lin et al. 2008). 

Although quantitative comparisons of individual genes are difficult due to either poor 

temporal resolution or lack of experimental replicates, we are able to detect correlations 

of genes within the G1/S regulon. We found that G1 blocks, including elutriation, 

correlate with our G1 block data (Table 2-3). Interestingly, the cdc15ts data from 

Spellman et al (1998) correlates with our G1 block experiments rather than the mitotic 

block experiments even though this is an anaphase block indicating that an event 

occurring in cells blocked downstream of Cdc20 may be responsible for differences in 

gene activation timing. We note that release from G1 arrest and free cycling are both 

likely to be physiologically relevant.  
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Table 2-3: Comparison of activation time distributions are calculated using previously published datasets 
(Spellman, Sherlock et al. 1998; Pramila, Wu et al. 2006; Orlando, Lin et al. 2008; Di Talia, Wang et al. 
2009) 

 

  Distribution of gene activation times  
   G1 block-release Mitotic block-release 
Data Source Year Synchronization Correlation 

Coefficient 
p-values Correlation 

Coefficient 
p-values 

This work 2010 G1 block 1 0 -0.13 0.15 
Di Talia et al. 2009 M block -0.13 0.15 1 0 
Pramila et al. 2006 a factor 0.41 8.44E-

11 
0.23 0.01 

Orlando et al.  2008 Elutriation(WT) 0.48 1.47E-
08 

-0.02 0.87 

Orlando et al.  2008 Elutriation(clbs∆) 0.65 2.42E-
12 

-0.17 0.24 

Spellman et al 1998 a factor 0.08 0.53 -0.4 0.02 
Spellman et al.  1998 cdc15 0.36 4.6E-03 0.04 0.84 
Spellman et al.   1998 cdc28 0.26 0.08 -0.39 0.11 
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CHAPTER3 : TRANSCRIPTIONAL “OR” GATE 

SBF- AND MBF-DEPENDENT ACTIVATION IS A LOGICAL OR GATE  

 

In the previous chapter, we showed that the activation order of G1/S genes changes in 

different arrest phases. We hypothesized that the observed differences in gene activation 

time in different blocks might be due to differential regulation of specific transcription 

factors. The majority of genes in what we defined as the G1/S regulon are regulated by 

the transcription factors SBF and MBF (Ferrezuelo, Colomina et al. 2010). For our 

analysis, we divided the activation times of the G1/S genes into three categories: 136 

SBF-only targets, 63 MBF-only targets, and 36 dual-regulated SBF and MBF targets. 

Since combinatorial use of transcription factors may yield differential activation timing, 

we analyzed the activation times of the SBF only, MBF only, and dual-regulated genes. 

For our G1 arrest data, we find that MBF-only targets are activated earlier than SBF-only 

targets (p <0.01). Furthermore, the distribution of the dual regulated targets is more 

similar to the earlier-activated MBF-only targets (p = 0.90) than the more tardy SBF-only 

targets (p = 0.01; Figure 3-1A).  

In the mitotic block-release, the SBF-only targets are activated earlier than the MBF-only 

targets (p = 0.08). This is the opposite order than in the G1-block experiments and 

consistent with the lack of correlation between activation times of individual G1/S 

regulon members (Figure 2-6D). Furthermore, we find that the common targets are much 

more likely to follow the SBF-only distribution (p = 0.79) than the MBF-only distribution 

(p = 0.06; Figure 3-1B). We note that the SBF distribution is broader so that the late-

activated SBF genes are activated later than the late-activated MBF genes. However, the 

late-activated dual-regulated genes now appear to follow MBF. 
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Figure 3-1: SBF and MBF dual-regulated promoters act as logical OR gates in response to activation and 
inactivation signals. Cumulative probability of activation times for SBF-only, MBF-only and SBF/MBF 
dual-regulated targets are plotted for (A) G1 block-release and (B) mitotic block-release experiments. Inset 
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shows p-values comparing each pair of distributions.  (C) Schematic showing logical regulation of the 
early-activated CLN1 promoter denoting SBF and MBF consensus binding sites. (D) Inactivation time for 
each gene, where the 1st derivative is zero and the 2nd derivative is negative (inset), is uncorrelated with 
activation for G1 block-release experiments. Points above the horizontal dotted line represent genes 
peaking later than 60 min. (E) Cumulative probability of inactivation for SBF-only, MBF-only and 
SBF/MBF dual targets for G1 block-release experiments. Inset shows p-values comparing each pair of 
distributions. (F) The transcriptional activation and inactivation can be modeled as a logical OR gate.  For 
dual-regulated genes, activating either SBF or MBF suffices for activation, while inactivating MBF suffices 
for inactivation. Different colors denote different possible states of a transcription factor. 

 

Taken together, our results from the two different types of experiments suggest that the 

dual-regulated targets are activated by the earliest active transcription factor. In the G1 

block experiments, the co-regulated genes are activated by MBF, while in the mitotic 

block experiments the co-regulated genes are activated by SBF. This implies that 

transcriptional activation is functioning as a logical OR gate, where either an active SBF 

or an active MBF is sufficient to activate transcription. 

LOGICAL INACTIVATION  

Our results analyzing transcriptional activation encouraged us to perform a similar 

analysis on transcriptional inactivation, which we estimate as the time of the peak 

transcript level (Figure 3-1C). The peak time is defined to be the point where the 1st 

derivative of the smoothed data is zero and the 2nd derivative is negative. We then 

implemented an algorithm for unbiased peak detection and analyzed our G1 block-release 

data. Inactivation is not well correlated with activation (Figure 3-1D).   

Next, we decided to analyze inactivation in light of our SBF-only, MBF-only and dual 

regulated gene lists. Whereas mitotic cyclins are responsible for SBF inactivation (Amon, 

Tyers et al. 1993), MBF inactivation is performed by Nrm1 possibly through a direct 

interaction (de Bruin, Kalashnikova et al. 2006). In nrm1∆ cells, mitotic cyclins are 

capable of inactivating MBF-regulated genes; however, inactivation is delayed about 10 

minutes relative to WT (de Bruin, Kalashnikova et al. 2006). This suggests that mitotic 

cyclin-dependent inactivation occurs later than Nrm1-dependent inactivation and that we 
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should expect to see MBF-only targets inactivated earlier than SBF-only targets. 

Consistent with previous results (Ferrezuelo, Colomina et al. 2010), we find that MBF-

only targets are inactivated earlier than SBF-only targets (p <10-7; Figure 3-1E, Figure 

3-2). The distribution of inactivation times for the dual regulated genes was much more 

similar to the MBF-only genes (p=0.52) than the SBF-only genes (p < 10-7). Inactivation 

of MBF is sufficient to turn off gene expression regardless of the presence of an active 

SBF transcription factor. Thus, both activation and inactivation may be represented by 

logical OR gates (Figure 3-1F).  

INACTIVATION TIMES OF SBF AND MBF SPECIFIC TARGETS 

 
To further investigate the logic of transcriptional inactivation, we analyzed the previously 

published time-course microarray data where the cells were synchronized via elutriation 

(Orlando, Lin et al. 2008). We found the result consistent with the analysis in the main 

text. The SBF and MBF dual regulated targets have the same inactivation time 

distribution as the MBF-only targets, supporting the Boolean OR-gate model of 

transcriptional inactivation. 
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Figure 3-2: Cumulative distribution of inactivation for SBF-only, MBF-only, and SBF/MBF dual regulated 
targets.  Microarray data from Orlando et al. (2008). 
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CHAPTER4 : EFFECT OF SPATIAL GENOME ORGANIZATION ON 

TRANSCRIPTION 

Feedback-first regulation ensures that commitment to cell division occurs before large-

scale changes in transcription and is conserved in the related yeast S. bayanus and human 

cells. In the previous chapter, we showed that timing differences within the G1/S regulon, 

comprised of both SBF and MBF targets, are partially explained by the combinatorial use 

of SBF and MBF transcription factors, which implement a logical OR function for gene 

activation. However, the molecular mechanisms underlying the precise temporal order at 

the basis of feedback-first regulation remained unclear. More specifically, we do not 

know what specifies the order of activation within the specific set of genes that are 

targets of SBF, but not MBF, and vice versa (Figure 3-1A,B). Here in this chapter, we 

analyze genome-wide chromosome conformation capture data to uncover a potential link 

between the timing of cell cycle regulated gene expression and 3-D genome architecture. 

NUCLEAR COMPARTMENTALIZATION 

A eukaryotic nucleus is not a homogenous bag of nucleic acids and proteins. 

Transcription in eukaryotes reflects this fact and comprises many layers of regulation, 

from cis-elements to higher-level chromosome organization (Misteli 2004; Fraser and 

Bickmore 2007; Meaburn and Misteli 2007; Babu, Janga et al. 2008; Takizawa, Gudla et 

al. 2008; Lieberman-Aiden, van Berkum et al. 2009). Such organization includes 

centromere clustering, telomere pairing, nuclear pore complex attachments, and nucleolus 

formation (Gotta, Laroche et al. 1996; Andrulis, Neiman et al. 1998; Jin, Fuchs et al. 

2000; Dekker, Rippe et al. 2002; Bystricky, Laroche et al. 2005; Taddei, Van Houwe et 

al. 2009). All these features have been described for the budding yeast S. cerevisiae, the 

subject of our study (Figure 4-1).  
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Figure 4-1: Illustration of distinct compartments within the yeast nucleus. 

 

Despite the significant evidence for yeast nuclear architecture, the model of chromosome 

territories, which states that the chromosomes occupy distinct regions in the nucleus, is 

not commonly accepted (Haber and Leung 1996; Meaburn and Misteli 2007; Berger, 

Cabal et al. 2008). Recently, the identification of nuclear architecture has been facilitated 

by high-throughput experimental methods based on Chromosome Conformation Capture 

(3C), called Hi-C (Duan, Andronescu et al. ; Dekker, Rippe et al. 2002; Simonis, Klous et 

al. 2006; Zhao, Tavoosidana et al. 2006; Lieberman-Aiden, van Berkum et al. 2009).  The 

common procedure of these experiments includes cross-linking the DNA fragments, 

which happen to be near one another, digesting with a restriction enzyme, circularizing, 
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processing and sequencing. If a circularized piece of DNA contains fragments from two 

different parts of the genome (Figure 4-2). This technique thus gives something akin to a 

frequency distribution of the physical interactions within the genome.  

 

Figure 4-2: Schematic of genome-wide chromatin conformation capture methods (adapted from Duan et al. 
2010). 

 

Here, in this chapter we analyzed Hi-C data published by Duan et al. to investigate the 

possible relationship between sublocalization of genes and transcription. We were driven 

to test the hypothesis that if compartmentalization affects the kinetics of cell cycle-

dependent transcriptional activation, then we should observe genes activated with similar 

timing to be colocalized in space, which predicts a higher frequency of interactions in a 

Hi-C data set.  
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GENES WITH SIMILAR ACTIVATION TIMING COLOCALIZE 

The Hi-C data contain interactions among pairs of fragment reads that are unevenly 

distributed along the genome with ~1 kbp resolution. We consider two genes as 

interacting if there is an interaction between at least one pair of fragments, which lies 

within 2.5 kbp at TSS of these genes as suggested previously (Dai and Dai 2012). The 

number of all possible pair-wise interactions among N genes is given by 

€ 

M =
N
2
" 

# 
$ 
% 

& 
' . If X is 

the number of all distinct interactions observed, the ratio X/M gives us the interaction 

enrichment or the colocalization score for a given set of N genes. To check if the 

interaction enrichment of this gene set is significantly higher than that of randomly 

chosen N genes, we bootstrapped our data by re-sampling N randomly picked genes 1000 

times to produce a smooth distribution of colocalization scores to comprise a null model. 

The percentile of the selected set of genes denotes the significance level of colocalization. 

Therefore, the p-value is calculated by the percentage of random cases, which have 

higher colocalization score than the genes of interest we are examining (Figure 4-3). 

To test the hypothesis that genes, which are activated at similar times share a distinct 

region of the nucleus, we first sorted the G1/S genes based on their activation times. Then 

we calculated the colocalization score and the p-value for a group of N adjacent genes 

sliding over all genes one-by-one. In other words, a window with a size N slides through 

the gene list and produces the colocalization score for each group. We calculated the 

results for groups of N = 5, 10, 15, 20 and 25 genes. We defined the colocalization 

coverage as the number of counts that a gene is considered as colocalized with the 

adjacent genes in the list by a p-value<0.05. We see significant colocalization of genes 

that are activated early and late in the G1/S regulon consistent with the model that genes 

of similar activation timing reside in similar regions of the nucleus (Figure 4-4).  
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Figure 4-3: The bootstrap procedure to calculate the significance of colocalization of a selected group of 
genes. 

Interestingly, spatial clustering of these genes does not obviously correlate with the type 

of TF (SBF or MBF) suggesting that the nuclear architecture is common to both factors.  

It has previously been shown in metazoan cells that transcription enzymes cluster 

spatially into regions denoted as transcription factories, which may regulate the 

transcription of genes differentially (Casolari, Brown et al. 2004; Janga, Collado-Vides et 

al. 2008). Our work here is consistent with the model of transcription factories, which 

have not, to our knowledge, been shown previously to apply to yeast cells.  
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Figure 4-4: Colocalization of the genes activated at similar times. Genes are arranged by activation time. 
We examine the degree of colocalization of a sliding window of varying number of genes (see text for 
details) indicating that early- and late-activated G1/S regulon members cluster in space. 

  

DISTINCT ACTIVATION TIME DISTRIBUTIONS BETWEEN GENE CLUSTERS 

So far, we have seen that the early and the late activated genes have enriched interactions 

among their groups suggesting a correlation between localization and transcriptional 

activation. Another way to examine this relationship is to compare the activation time 

distributions of the genes in different clusters in the nucleus. To determine the gene 

clusters in the nucleus, distance information between any two genes is needed. Therefore, 

similar to Duan et al (2010), we defined a distance metric by assigning the nearest 

upstream and downstream fragments to the start codon of each gene, then calculated the 

total interaction between all possible pair of genes in the G1/S regulon (Figure 4-5A). 

Hence, the metric is defined by subtracting the total interactions between four fragments 

assigned to two genes from the maximum possible interactions, i.e., 4. In other words, the 

distance metric has the score 0 for the closest pair of genes, which have 4 interactions, 

and 4 for the most distant ones, which have no interaction. Figure 4-5B shows the 



 

 46 

heatmap representation of distance metric of the genes in G1/S regulon, which are sorted 

alphabetically. Next, we used an agglomerative hierarchical clustering algorithm with 

average linkage clustering criterion and applied a threshold (cophenetic distance>20) to 

limit the dendrogram to 6 clusters (Figure 4-6). 

Figure 4-5: (A) Possible interactions between the assigned fragments of any two genes (Gene X and Gene 
Y). (B) Heatmap of a matrix showing the distance between gene pairs. Rows and columns denote the G1/S 
genes and they are alphabetically sorted. 

 

Interestingly, the genes in two clusters (clusters 1 and 2) show significantly different 

activation time distributions with the mean 12.2 (± 1.7) min. and 16.6 (± 1.4) min., 

respectively (p<0.01; Figure 4-7). Different clusters with different activation time 

distributions underlines the heterogeneity effect of nuclear organization. But, what, 

physically, do these functional clusters indicate? We hypothesize, that distinct clusters 

correspond to distinct regions of the nucleus that may be composed of different 

chromatin distributions.  
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Figure 4-6: Average-linkage hierarchical clustering of G1/S genes. Color-code indicating clusters remains 
same for the clusters in both (A) the denrogram, and (B) the heatmap. 
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Figure 4-7: Activation time distributions of clusters 1 and 2 as indicated in Fig. 4-6 above. 

But, what is the correspondence between a Hi-C frequency map and the spatial structure 

of the genome? Clearly, the Hi-C data we analyze represent the statistical ensemble of 

many genome configurations. Because some parts of the genome are constrained by 

protein complex interactions, such as within the nucleolus, nuclear pore complex, spindle 

pole body and centromeres, the amount of different configurations that are represented in 

the ensemble could be considered a local parameter. Each cell can maximally contribute 

only a single interaction for each fragment to the ensemble. To calculate the total amount 

of interactions per gene, we assign the closest fragment to each gene. Hence, we obtain 

the total number of interaction distributions of the clusters, which can be considered a 

measure of their number of different configurations. Significantly, we observe distinct 

distributions of total interaction amount for the early and the late clusters, i.e., cluster 1 

and cluster 2 (Figure 4-8A). This result suggests that the more interactions correlate with 

the earlier activation. Indeed, if we stratify all the G1/S genes based on a threshold of the 

interaction amounts (Appendix C, Figure C-1); we find a statistically more significant 

distinction between the activation timing distributions (Figure 4-8B).  
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Figure 4-8: Amount of interactions observed in the data is one of the determinants of spatial clustering. (A) 
Distributions of interaction amounts of the genes in cluster-1 (blue) and in cluster-2 (red) are significantly 
different. (B) Genes interacting with more than 330 fragments have earlier activation times than that are 
interacting less than 330 fragments, a result robust to the choice of cutoff. 

Thus, in this chapter, we have tested the hypothesis that co-localization of genes within 

distinct compartments within the nucleus using Hi-C data. Our analysis suggests that 
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nuclear compartmentalization can have a significant affect on how quickly genes within 

particular regions within the yeast genome can be activated. This defines a second axis, 

distinct from the combinatorial use of transcription factors, the cell can tune to generate 

the differential activation timing of cell cycle-dependent transcription that underpins 

feedback-first regulation. Future work will test this hypothesis by integrating a subset of 

SBF-regulated genes into a large set of locations within the genome and measuring 

activation time. 
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CHAPTER5 : FEEDBACK-FIRST MOTIF IN OTHER EUKARYOTES 

We found that S. cerevisiae activates positive feedback and commits to another round of 

cell division before making large-scale changes to its transcriptional program.  This 

temporal organization of the G1/S regulon may be an efficient way to ensure that cell 

cycle associated genes are only transcribed after a cell has decided to divide.  If feedback-

first regulation increases fitness then we should expect to see it conserved in divergent 

evolutionary lineages.  

FEEDBACK-FIRST REGULATION IN THE BUDDING YEAST S. BAYANUS 

 

To examine the conservation of feedback-first regulation, we analyzed a closely related 

yeast Saccharomyces bayanus, for which cell cycle synchronized microarray data was 

available. Compared to S. cerevisiae, S. bayanus has 67% local similarity of intergenic 

regions indicating significant divergence of gene regulation (Cliften, Sudarsanam et al. 

2003). Gene orthologs are easily identified by sequence and the S. bayanus genes are 

conveniently annotated using the S. cerevisiae nomenclature (Cliften, Sudarsanam et al. 

2003). Indeed, studies on the evolution of gene expression among sensu stricto yeast 

species revealed substantial differences (Tirosh, Weinberger et al. 2006; Guan, Dunham 

et al. 2010).   

We analyzed the S. bayanus time-course microarray dataset from the GEO database 

(GSE16544). Cells were synchronized in G1 using mating pheromone and samples were 

taken every 10 minutes for 300 minutes following release (Guan, Dunham et al. 2010). 

To define a set of genes that are cell cycle regulated, we calculated the cross-correlation 

coefficients with two known cell cycle regulated genes, CLN2 and the G2 gene KIN2. We 

sorted the genes based on their cross-correlation scores and selected the 714 genes that 
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were in the top 1000 of both cross-correlations. To eliminate spurious profiles, we 

considered only genes showing multiple well-defined oscillations.  

We analyzed the correlation of cell cycle regulated gene expression in the two budding 

yeasts.  Of the 800 and the 223 well-defined cell cycle regulated genes in S. cerevisiae 

and S. bayanus respectively, only 79 were cell cycle regulated in both species (Figure 

5-1A). Furthermore, the activation times of the common cell cycle regulated genes is 

weakly correlated (R2 = 0.22; Figure 5-1B). Our observation of significant changes in 

transcriptional activation timing through the cell cycle is consistent with the emerging 

picture of significantly diverged transcription across the sensu stricto (Tirosh, 

Weinberger et al. 2006).  
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Figure 5-1: Feedback-first regulation is conserved in the budding yeast S. bayanus. Activation times are 
analyzed for all cell cycle regulated genes in a S. bayanus pheromone block-release microarray time-course 
(Guan, Dunham et al. 2010). (A) Intersection of cell cycle regulated genes in both budding yeasts. (B) 
Weak correlation between gene activation times in S. bayanus and S. cerevisiae for G1 block-release 
experiments. (C) Histogram of activation times of the cell cycle regulated genes in S. bayanus indicates that 
the G1 cyclins responsible for positive feedback, CLN1 and CLN2, are among the early-activated genes 

To test for the conservation of feedback-first regulation, we analyzed the distribution of 

first activation times (<80 min). The activation times for CLN1 and CLN2 was calculated 

to be 6 and 15 minutes respectively. Thus, the G1 cyclins are among the earliest activated 

genes in the S. bayanus cell cycle, which indicates conservation of feedback-first 

regulation (Figure 5-1C). 

TEMPORAL ANALYSIS OF E2F-DEPENDENT TRANSCRIPTION IN HUMAN 

CELLS  

 

Our finding that two yeasts engage positive feedback prior to full regulon activation 

suggests that this regulatory motif is widespread. Thus, we chose to examine a 

mammalian system.  Although many of the components of the genetic network regulating 

the G1/S transition in mammals do not have well-defined orthologs in yeast, both 

networks contain multiple positive feedback elements indicating similar network 

topology (Figure 5-2A). There is a functional analogy between the cyclin D-E2F-Rb-

cyclinE and the Cln3-SBF/MBF-Whi5-Cln1/2 pathways. Furthermore, both budding 

yeasts and mammals regulate commitment to cell division in response to multiple internal 

and external signals at the G1/S transition (Planas-Silva and Weinberg 1997; 

Blagosklonny and Pardee 2002; Yao, Lee et al. 2008). 

Mammalian G1 progression is initiated by mitogen-dependent activation of cyclin D–

CDK4/6 complexes, which phosphorylate and partially inactivate the transcriptional 

inhibitor Rb (Blagosklonny and Pardee 2002). This allows for the initiation of 

transcription by the E2F family (E2F1-3) of transcription factors. Included in this set of 

genes are cyclin E1 and cyclin E2, which complex with CDK2 to phosphorylate Rb and 
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thereby complete a positive feedback loop (Bracken, Ciro et al. 2004).  Additionally, at 

the G1/S transition E2F initiates transcription of E2F1, which may form a second 

transcriptional positive feedback loop(Johnson, Ohtani et al. 1994). The SCF component 

Skp2, responsible for the specific degradation of the CDK inhibitor p27, is also an E2F 

target (Yung, Walker et al. 2007).  Therefore, multiple potential positive feedback loops 

may act during the mammalian G1/S transition. If our feedback-first model applies to 

mammalian cell cycle control, we expect to see feedback loop components transcribed 

before other E2F targets.  
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Figure 5-2: Feedback-first regulation is conserved in human cells. (A) Schematic diagram of G1/S 
regulation in human cells. (B) Cyclin E1 activation is consistent in 4 different cell cycle synchronized 
microarray experiments from Whitfield et al. (2002). The standard deviation σ and the standard error of the 
mean (SEM) is calculated for each gene. (C) 7 genes regulated by the E2F family of transcription factors 
are activated at different times; data shown from a single dataset. The vertical and horizontal bars indicate 
the mean activation time and the SEM respectively. (D) Gene activation time correlation between 2 
datasets (R2 = 0.52). (E) Cumulative distribution of mean activation times for cell cycle regulated E2F-
targets. Genes responsible for positive feedback at the G1/S transition, including the cyclins E1 and E2 the 
transcription factor E2F1, and the SCF component Skp2, are transcribed earlier than other E2F-targets 
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(p<0.01) and earlier than the set of E2F targets specifically involved in DNA replication (p=0.03). This 
demonstrates the conservation of feedback-first regulation in eukaryotes. 

To test our hypothesis that the positive feedback elements are transcribed early, we first 

need to define a set of cell cycle regulated E2F targets (Markey, Angus et al. 2002; Ren, 

Cam et al. 2002). Therefore, we compiled a list of 311 cell cycle regulated E2F targets 

from two previous studies (Table S5) (Muller, Bracken et al. 2001; Whitfield, Sherlock et 

al. 2002; Xu, Bieda et al. 2007).  

We analyzed gene activation timing in human HeLa cells for 4 cell cycle synchronized 

microarray time courses (Whitfield, Sherlock et al. 2002). We see consistent activation of 

individual genes across the datasets. For example, cyclin E1 is activated at 5.4 ± 0.6 

hours on average with a standard deviation of 1.1 hours (Figure 5-2B). Our analysis 

identifies distinct activation times for E2F regulated genes (Figure 5-2C). Three 

experiments synchronized cell with a double thymidine block and one experiment used a 

thymidine block followed by a nocodazole block (Whitfield, Sherlock et al. 2002). 

However, we see no difference in relative activation timing due to the two different 

synchronization methods as all four data sets yield comparable results (Figure 5-2D). As 

for the two yeast analyses, we observe that genes responsible for positive feedback 

(cyclin E1, cyclin E2, Skp2 and E2F1) are among the first transcribed at the G1/S 

transition consistent with our feedback-first model (Figure 5-2E).  
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CHAPTER6 : DISCUSSION 

We showed that genome-wide transcription is restricted until positive feedback commits 

a cell to division. This regulatory organization was previously unclear because 

transcription of the G1 cyclins and the rest of the G1/S regulon are both dependent on the 

same transcription factors and appear concurrent when analyzed with clustering-based 

algorithms. In contrast, both our activation detection algorithm and parametric algorithms 

preserve dynamic information (Chechik, Oh et al. 2008).  

TEMPORAL SEPARATION OF POSITIVE AND NEGATIVE FEEDBACK LOOPS 

 

An interesting feature of the G1/S regulon is that both positive (CLN1,2) and negative 

(NRM1) feedback elements are regulated under the same CDK-dependent transcription 

factors. Activating both feedbacks at the same time would be much like stepping on the 

brake and gas pedals simultaneously to detrimental effect (Figure 2).  To avoid this 

outcome, promoter specific kinetics may allow temporal separation of positive and 

negative feedback loops. A similar process was found to regulate mitotic entry in 

Xenopus egg extracts(Georgi, Stukenberg et al. 2002). Wee1 and Cdc25 phosphorylation 

by CDK1, which is associated with positive feedback at mitotic entry, occurs before the 

phosphorylation of other CDK1 targets including the APC component Cdc27.  Thus, both 

feedback-first regulation and the temporal separation of positive and negative feedback 

loops may be enacted through the evolution of differential rate constants.  

FEEDBACK-FIRST REGULATION ENSURES COMMITMENT TO CELL DIVISION 

PRIOR TO LARGE-SCALE CHANGES IN GENE EXPRESSION  
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Transcribing genes when they are needed may increase efficiency by avoiding 

unnecessary protein synthesis. The subunits of the E. coli flagella were found to be 

synthesized in the order that they are needed for assembly (Kalir, McClure et al. 2001). 

Fine temporal control of transcription during amino acid synthesis ensured that enzymes 

were made in the order they were needed (Zaslaver, Mayo et al. 2004). In the cell cycle 

context, ribonucleotide reductase is transcribed just before S phase (Elledge and Davis 

1990), and histones are transcribed during S phase to be assembled with newly replicated 

DNA (Borun, Gabrielli et al. 1975; Hereford, Osley et al. 1981). Taken together, these 

studies indicate that fine temporal order of events may provide a fitness advantage.  

A transcriptional oscillation with specific temporal order occurs through the cell division 

cycle in both prokaryotes and eukaryotes. This extensive oscillation entails ~10-20% of 

all Caulobacter and budding yeast genes (Cho, Campbell et al. 1998; Spellman, Sherlock 

et al. 1998; Laub, McAdams et al. 2000). However, a comparative analysis of the yeasts 

S. pombe and S. cerevisiae revealed that temporal regulation of most orthologous genes is 

not well conserved (Rustici, Mata et al. 2004; Oliva, Rosebrock et al. 2005; Peng, 

Karuturi et al. 2005). Indeed, the order of gene activation at the G1/S transition in S. 

cerevisiae depends on the synchronization phase (Figure 2-6D).  Further comparison of 

the two yeasts with human cell lines and the plant Arabidopsis revealed that only 5 

orthologs are cell cycle regulated in all 4 species (Jensen, Jensen et al. 2006).  However, 

different protein subunits of the same complex were often found to have cell cycle 

regulated transcription in different species, suggesting conserved transcriptional control 

of the complex rather than the individual subunits (Jensen, Jensen et al. 2006).  Thus, 

although periodic transcription of individual genes varies, there may still be conserved 

regulatory features.  

TOWARDS THE MECHANISTIC BASIS OF TRANSCRIPTION ORDER 

We observed considerable variation in gene activation timing among genes regulated by a 

specific transcription factor. In budding yeast, we showed that a significant amount of 
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this variation is due to combinatorial use of the transcription factors SBF and MBF 

resulting in logical OR gates for both transcriptional activation and inactivation. Thus, the 

genes regulated by both SBF and MBF transcription factors are activated early in mitotic 

block-release experiments, where SBF is activated before MBF, and in G1 block-release 

experiments, where MBF is activated before SBF. This may be functionally relevant as 

the earliest activated G1 cyclin CLN1 is regulated by both factors (Flick, Chapman-

Shimshoni et al. 1998; Ferrezuelo, Colomina et al. 2010), which may ensure feedback-

first regulation in a variety of physiological contexts.  

Cells utilize the digital nature of the genetic code but many of the complex biological 

processes require analog tuning of the signals. In other words, regulating the expression 

levels and the timing of many genes only with a single transcription factor makes it 

difficult to optimize the cost for adaptation. Compartmentalization of transcription 

factories is an elegant way of adjusting the trans-signal by a transcription factor. 

Furthermore, our analysis in chapter 4 emphasized the effect of nuclear organization on 

the transcriptional activation timing.  

The chromosomes are tethered at specific sites to distinct loci in the nucleus, constraining 

the conformation for certain chromosome regions. We showed that the earlier activated 

genes have more interactions, which means that they are less confined than the genes 

activated later that have fewer interactions. The relationship between the transcriptional 

activation and the interaction amount can possibly be explained by the chromatin state. 

Certain regions have closed structure, called heterochromatin, and known as 

transcriptionally more silent; whereas other regions are more flexible, called 

euchromatin, and have been identified as transcriptionally more active (Kurdistani, 

Tavazoie et al. 2004; Pokholok, Harbison et al. 2005). Thus, the amount of total 

interactions of a gene might correlate with the openness of the chromatin, which is 

already reported as in relation to transcription. Future work will aim at explaining the 

relationship between the activation timing and the chromatin state. 



 

 60 

There are other possible mechanisms that can also contribute to the molecular basis for 

the significant temporal variation in G1/S transcription unexplained by the combinatorial 

use of SBF and MBF. One possibility is that differential transcription timing may arise 

through the combinatorial use of additional transcription factors (Kato, Hata et al. 2004). 

In such a model, intermediate times might be produced by regulating a promoter with a 

late-activated and an early-activated transcription factor. An example of this type of 

regulation is that the Fkh2-regulated genes show different activation times at G2/M 

depending on Yox1-coregulation (Darieva, Clancy et al. 2010). This model suggests that 

the late activated SBF targets might also be regulated by a late-activated transcription 

factor such as Fkh2. A large number of transcription factors might therefore account for 

the variation in gene activation time. 

A second possibility is that promoter-specific rate-constants underlie gene activation 

kinetics. This could arise through promoter-specific transcription factor and nucleosome 

arrangements or TATA-box sequence (Lam, Steger et al. 2008; Chechik and Koller 2009; 

Bai, Charvin et al. 2010; Mogno, Vallania et al. 2010). Thus, in response to a single input 

such as CDK activity, the organization of kinetic parameters can result in differential 

activation timing (Shen-Orr, Milo et al. 2002). We note that all these classes of 

mechanisms are not mutually exclusive and likely cooperate to tune gene expression.  

Here, we identify such a conserved regulatory feature of the eukaryotic cell cycle. We 

find that commitment via positive feedback precedes large-scale transcriptional activation 

at the G1/S transition. Our study was able to identify feedback-first regulation because 

we employ a novel algorithm to analyze activation and inactivation separately. We 

revealed feedback-first regulation in the yeasts, S. cerevisiae and S. bayanus as well as in 

human cells. The conservation of feedback-first regulation leads us to anticipate its 

widespread use in cellular and developmental transitions. 
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APPENDIX A: STRAINS 

YEAST STRAINS 

Table A-1:  Yeast strains used in this study 

Name Genotype Source 

JS38-1a MATa  cln1∆::HIS3  cln2∆  cln3∆::LEU2  TRP1::MET3pr-CLN2   

HTB2-mCherry-spHIS5  WHI5-GFP-kanMX  ADE2  ura3-1 can1-1 

(W303 background) 

(Skotheim, Di 
Talia et al. 2008) 

JS163-8d MATa  bar1∆::URA3 ADE2 leu2-3,100  his3-11,15  trp1-1 can1-1 

(W303 background) 

(Eser, et al. 2011) 

JS209 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 CLN2::CLN2pr-VenusPEST   

(BY4741 background) 

(Eser, et al. 2011) 

JS210 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 CLN1::CLN1pr-VenusPEST 

(BY4741 background) 

(Eser, et al. 2011) 

 
C-terminal GFP fusion strains in the BY4741 background used for live-cell imaging were 

from the UCSF collection(Ghaemmaghami, Huh et al. 2003). We created JS209 by 

integrating pJS19 at the CLN2 locus after EcoNI digestion.  Similarly, we created JS201 

by integrating pJS25 at the CLN1 locus after AgeI digestion. 

PLASMIDS 

Table A-2: Plasmids used in this study.  

Name Description Source 

pJS19 pRS406-CLN2pr-Venus-PEST  (Eser, et al. 2011) 

pJS25 pRS406-CLN1pr-Venus-PEST  (Eser, et al. 2011) 

pGC08D pRS404-CLN2pr-Venus-PEST G. Charvin 

 
pGC08D was a kind gift from G. Charvin.  To construct pJS19, the CLN2pr-Venus-PEST 

insert from pGC08D was ligated to the pRS406 vector following digestion with BglI. A 

1kb CLN1 promoter fragment with terminal PacI and BamHI restriction sites was 
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obtained by PCR of genomic DNA replace the 1kb CLN2 promoter in pJS19 to create 

pJS25.  
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APPENDIX B: EXPERIMENTAL PROCEDURES 

MICROARRAY EXPERIMENTS AND ANALYSIS 

Mitotic block release analysis was based on data collected in (Di Talia, Wang et al. 

2009). The sequential order of activations is highly consistent between datasets indicating 

a defined temporal regulation even though the genotypes for the 7 time-courses were not 

identical (Figure 2-1F, Figure 2-3; Table 2-1).  

G1 block-release experiments were performed at 30°C. Cells were harvested immediately 

after inoculation and then every 5 minutes thereafter. Microarray hybridization was 

performed at the Stony Brook Microarray Facility. For pheromone block experiments, 

bar1∆ cells were grown in log-phase in either SCD (%2) or SCG (3%) before being 

arrested for 135 minutes in 95nM α-factor. Cells were then washed and inoculated into 

pheromone-free media. The cln-block experiment was performed using cln1∆ cln2∆ 

cln3∆ MET3pr-CLN2 cells grown to early log-phase in SCD - met (media without 

methionine; exogenous CLN2 on), then 0.2g/L met was added for 120 minutes to arrest 

cells in early G1 (CLN2 off). Cells were then washed and inoculated into 4mg/L met 

(CLN2 partially on) to provide the amount of CLN2 expression resulting in budding 

kinetics similar to WT cells released from a pheromone block. 

There was some ambiguity in identifying the gene activation time for CLN1 in the S. 

bayanus data set because either the 2nd or 3rd data point for CLN1 was likely an outlier. 

Therefore, we averaged the activation times for the dataset after having removed either 

the 2nd or 3rd data point.  

TIME-LAPSE FLUORESCENCE MICROSCOPY 

Wide-field fluorescence and phase-contrast images were captured every 3 minutes for 6 

hours from cells prepared as previously described (Bean, Siggia et al. 2006). Cells were 
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automatically segmented and the mean fluorescence intensity was measured. Bud 

emergence was identified manually using phase images.  



 

 

APPENDIX C: ANALYZING THE HI-C DATA 

We separated the genes into two groups, high-interacting and low interacting, based on 

their interaction amount. To see whether the distributions of activation times of high and 

low interacting genes are significant, we applied Kolmogorov-Smirnov test (KS-test). By 

changing the threshold from 1 to 600, we found that for a wide range of threshold, p-

value is less than 0.05. This result confirms that the significance of the statistics does not 

sensitively depend on the choice of threshold. Therefore, in chapter 4, we used 330 as a 

threshold for grouping the high and low interacting genes.  

 

Figure C-1: p-value of the KS-test applied to the activation time distributions of high and low interacting 
genes. x-axis is the threshold values that classify the high and low interaction groups. 
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APPENDIX D: G1/S GENES ACTIVATION TIMES 

Table D-1: List of G1/S genes with their activation times in mitotic and G1 block-release experiments  

YORF	
   ORF	
   function	
   TF	
  
Activation	
  

Time-­‐	
  M	
  block	
   STD	
   SEM	
  
Activation	
  Time-­‐	
  G1	
  

block	
  
YGR041W	
   BUD9	
   biosynthesis	
   	
   4	
   NaN	
   NaN	
   13	
  
YHR067W	
   HTD2	
   biosynthesis	
   	
   4	
   NaN	
   NaN	
   NaN	
  
YBR071W	
   YBR071W	
   biosynthesis	
   SBF&MBF	
   5	
   2.1	
   0.9	
   12	
  
YAL067C	
   SEO1	
   uncharacterized	
   	
   5	
   0.9	
   0.3	
   35	
  
YGL028C	
   SCW11	
   cell	
  wall	
   	
   5	
   3.0	
   1.1	
   NaN	
  
YOR075W	
   UFE1	
   transport	
   	
   5	
   2.6	
   1.5	
   NaN	
  
YPL054W	
   LEE1	
   uncharacterized	
   	
   5	
   NaN	
   NaN	
   NaN	
  
YMR199W	
   CLN1	
   G1/S	
  control	
   SBF&MBF	
   6	
   2.3	
   0.9	
   5	
  
YLR049C	
   YLR049C	
   uncharacterized	
   MBF	
   6	
   NaN	
   NaN	
   14	
  
YIR017C	
   MET28	
   bud	
   	
   6	
   2.1	
   0.9	
   35	
  
YDR528W	
   YDR528W	
   biosynthesis	
   	
   6	
   NaN	
   NaN	
   NaN	
  
YKR077W	
   YKR077W	
   biosynthesis	
   MBF	
   6	
   1.6	
   0.6	
   NaN	
  
YLR286C	
   CTS1	
   DNA	
   	
   6	
   2.3	
   0.9	
   NaN	
  
YLR300W	
   EXG1	
   cell	
  wall	
   SBF&MBF	
   6	
   2.9	
   1.1	
   NaN	
  

YML027W	
   YOX1	
  
TF	
  transcription	
  at	
  
M/G1	
  	
   SBF&MBF	
   7	
   5.7	
   2.3	
   10	
  

YGR189C	
   CRH1	
   cell	
  wall	
   SBF&MBF	
   7	
   3.9	
   1.7	
   15	
  
YOL019W	
   YOL019W	
   uncharacterized	
   SBF	
   7	
   2.9	
   1.2	
   21	
  
YPR106W	
   ISR1	
   G1/S	
  control	
  /	
  DNA	
   	
   7	
   NaN	
   NaN	
   29	
  
YER124C	
   DSE1	
   uncharacterized	
   	
   7	
   3.6	
   1.4	
   32	
  
YDR353W	
   TRR1	
   biosynthesis	
   	
   7	
   3.1	
   1.4	
   NaN	
  
YHR123W	
   EPT1	
   biosynthesis	
   	
   7	
   2.3	
   1.0	
   NaN	
  
YER070W	
   RNR1	
   DNA	
   SBF&MBF	
   8	
   5.3	
   2.2	
   10	
  
YIL076W	
   SEC28	
   transport	
   	
   8	
   3.5	
   2.5	
   12	
  
YGR055W	
   MUP1	
   transcription	
   	
   8	
   2.4	
   0.9	
   30	
  
YPL269W	
   KAR9	
   mitosis	
   	
   8	
   4.2	
   3.0	
   32	
  
YGL184C	
   STR3	
   biosynthesis	
   	
   8	
   2.5	
   1.0	
   33	
  
YKR069W	
   MET1	
   biosynthesis	
   	
   8	
   2.5	
   1.0	
   35	
  
YHR143W	
   DSE2	
   cell	
  wall	
   	
   8	
   3.1	
   1.3	
   36	
  
YNL208W	
   YNL208W	
   uncharacterized	
   	
   8	
   2.3	
   1.3	
   NaN	
  
YDL101C	
   DUN1	
   DNA	
   MBF	
   9	
   7.9	
   3.9	
   8	
  
YLR313C	
   SPH1	
   bud	
   MBF	
   9	
   3.4	
   1.5	
   9	
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YDL156W	
   YDL156W	
   cell	
  wall	
   MBF	
   9	
   2.7	
   1.1	
   13	
  
YEL068C	
   YEL068C	
   uncharacterized	
   	
   9	
   7.5	
   4.3	
   23	
  
YLL062C	
   YLL062C	
   DNA	
   	
   9	
   2.1	
   0.8	
   42	
  
YAR003W	
   SWD1	
   transcription	
   	
   9	
   2.3	
   1.3	
   NaN	
  
YER091C	
   MET6	
   biosynthesis	
   	
   9	
   2.8	
   1.0	
   NaN	
  
YPL232W	
   SSO1	
   transport	
   	
   9	
   5.3	
   2.0	
   NaN	
  
YDL227C	
   HO	
   endonuclease	
   SBF	
   10	
   3.4	
   1.4	
   11	
  
YIL140W	
   SRO4	
   bud	
   SBF&MBF	
   10	
   4.0	
   1.8	
   13	
  
YOR308C	
   YOR308C	
   RNA	
  processing	
   	
   10	
   4.0	
   2.3	
   30	
  
YKL001C	
   MET14	
   biosynthesis	
   	
   10	
   2.4	
   0.9	
   43	
  
YKL042W	
   SPC42	
   SPB	
   MBF	
   11	
   4.7	
   1.8	
   10	
  
YDR356W	
   NUF1	
   SPB	
   MBF	
   11	
   5.7	
   2.8	
   11	
  
YOL007C	
   YOL007C	
   uncharacterized	
   SBF	
   11	
   4.6	
   1.8	
   11	
  
YEL064C	
   YEL064C	
   bud	
   	
   11	
   1.5	
   0.8	
   13	
  
YAL053W	
   YAL053W	
   cell	
  wall	
   	
   11	
   2.7	
   1.0	
   14	
  
YJR006W	
   HYS2	
   DNA	
   	
   11	
   6.8	
   3.4	
   15	
  
YKR091W	
   SRL3	
   DNA	
   	
   11	
   4.0	
   1.6	
   15	
  
YLL012W	
   YEH1	
   biosynthesis	
   	
   11	
   2.9	
   1.3	
   16	
  
YFR030W	
   MET10	
   biosynthesis	
   	
   11	
   1.3	
   0.5	
   37	
  
YJR137C	
   ECM17	
   biosynthesis	
   	
   11	
   2.3	
   0.9	
   38	
  
YGL125W	
   MET11	
   biosynthesis	
   	
   11	
   6.2	
   2.5	
   40	
  
YIL104C	
   SHQ1	
   RNA	
  processing	
   	
   11	
   2.9	
   1.7	
   NaN	
  
YDL103C	
   QRI1	
   cell	
  wall	
   	
   12	
   13.3	
   7.7	
   12	
  
YPL163C	
   SVS1	
   cell	
  wall	
   SBF	
   12	
   3.8	
   1.4	
   13	
  
YNL225C	
   CNM1	
   DNA	
   	
   12	
   6.3	
   2.6	
   14	
  
YDL127W	
   PCL2	
   DNA	
   SBF	
   12	
   13.8	
   5.2	
   16	
  
YPR018W	
   RLF2	
   DNA	
   MBF	
   12	
   5.6	
   2.3	
   16	
  
YJR155W	
   YJR155W	
   DNA	
   	
   12	
   4.0	
   1.8	
   17	
  

YKR010C	
   TOF2	
  
transcription	
  
silencing	
   	
   12	
   7.0	
   3.1	
   32	
  

YLL061W	
   MMP1	
   biosynthesis	
   	
   12	
   2.8	
   1.0	
   36	
  
YCL024W	
   KCC4	
   bud	
   	
   12	
   3.1	
   1.2	
   NaN	
  
YKL065C	
   YET1	
   uncharacterized	
   	
   12	
   NaN	
   NaN	
   NaN	
  
YGL207W	
   SPT16	
   DNA	
   	
   13	
   NaN	
   NaN	
   10	
  
YHR030C	
   SLT2	
   cell	
  wall	
   	
   13	
   2.8	
   1.1	
   11	
  
YOR115C	
   YOR115C	
   transport	
   	
   13	
   6.2	
   2.8	
   11	
  

YPL256C	
   CLN2	
  
Cdh1	
  inhibitor	
  /	
  
G1/S	
  ?	
   SBF	
   13	
   1.9	
   0.7	
   12	
  

YPR120C	
   CLB5	
   G1/S	
  control	
   MBF	
   13	
   3.7	
   1.4	
   14	
  
YKL101W	
   HSL1	
   biosynthesis	
   SBF&MBF	
   13	
   4.3	
   1.6	
   15	
  
YDR309C	
   GIC2	
   bud	
   SBF&MBF	
   13	
   1.9	
   0.7	
   16	
  
YPR174C	
   YPR174C	
   uncharacterized	
   MBF	
   13	
   7.2	
   3.2	
   17	
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YLR121C	
   YPS3	
   cell	
  wall	
   SBF	
   13	
   2.4	
   0.9	
   18	
  
YIL066C	
   RNR3	
   DNA	
   	
   13	
   2.9	
   1.7	
   19	
  
YPL274W	
   SAM3	
   biosynthesis	
   	
   13	
   2.1	
   0.8	
   35	
  
YIL074C	
   SER33	
   biosynthesis	
   	
   13	
   1.3	
   0.5	
   49	
  
YBR073W	
   RDH54	
   DNA	
   	
   13	
   3.9	
   1.9	
   NaN	
  
YDL055C	
   PSA1	
   cell	
  wall	
   SBF	
   13	
   2.3	
   0.9	
   NaN	
  
YER149C	
   PEA2	
   mitosis	
   	
   13	
   4.6	
   2.7	
   NaN	
  
YHR149C	
   SKG6	
   bud	
   SBF&MBF	
   13	
   2.7	
   1.0	
   NaN	
  
YNL309W	
   STB1	
   G1/S	
  control	
   MBF	
   14	
   7.1	
   3.5	
   7	
  

YMR179W	
   SPT21	
  
transcription	
  
silencing	
   SBF&MBF	
   14	
   5.2	
   2.1	
   8	
  

YGR042W	
   YGR042W	
   uncharacterized	
   	
   14	
   2.6	
   1.2	
   10	
  
YNL300W	
   YNL300W	
   bud	
   SBF	
   14	
   8.5	
   6.0	
   11	
  

YDL211C	
   YDL211C	
  
mating	
  type	
  
switching	
   	
   14	
   8.1	
   4.7	
   12	
  

YML012W	
   ERV25	
   DNA	
   MBF	
   14	
   5.4	
   2.7	
   12	
  
YDR113C	
   PDS1	
   biosynthesis	
   SBF&MBF	
   14	
   7.6	
   2.9	
   13	
  
YBR088C	
   POL30	
   DNA	
   SBF&MBF	
   14	
   2.9	
   1.1	
   14	
  
YJL181W	
   YJL181W	
   uncharacterized	
   MBF	
   14	
   5.4	
   2.4	
   14	
  
YOR144C	
   YOR144C	
   biosynthesis	
   MBF	
   14	
   5.5	
   2.3	
   17	
  
YJR054W	
   YJR054W	
   mitosis	
   SBF	
   14	
   3.3	
   1.7	
   18	
  
YKL089W	
   MIF2	
   mitosis	
   MBF	
   14	
   5.9	
   2.4	
   18	
  
YJL078C	
   PRY3	
   uncharacterized	
   	
   14	
   2.4	
   1.2	
   NaN	
  
YOL034W	
   SMC5	
   DNA	
   MBF	
   14	
   5.3	
   2.6	
   NaN	
  
YLR032W	
   RAD5	
   telomere	
  silencing	
   MBF	
   15	
   3.5	
   2.5	
   9	
  
YNL082W	
   PMS1	
   cell	
  wall	
   MBF	
   15	
   3.6	
   1.6	
   9	
  
YLR467W	
   YRF1-­‐5	
   telomeres	
   	
   15	
   4.5	
   2.3	
   10	
  
YOL017W	
   YOL017W	
   MBF	
  corepressor	
   MBF	
   15	
   5.5	
   2.3	
   11	
  
YGL061C	
   YGL061C	
   biosynthesis	
   	
   15	
   5.3	
   2.2	
   14	
  
YBR007C	
   DSF2	
   uncharacterized	
   	
   15	
   10.2	
   4.5	
   16	
  
YAR008W	
   SEN34	
   DNA	
   MBF	
   15	
   3.9	
   1.7	
   17	
  
YKL008C	
   YKL008C	
   vacuole	
   	
   15	
   5.7	
   2.6	
   29	
  
YPL253C	
   VIK1	
   SPB	
   	
   15	
   11.3	
   8.0	
   29	
  
YPL250C	
   YPL250C	
   uncharacterized	
   	
   15	
   2.4	
   1.0	
   30	
  
YBR108W	
   AIM3	
   uncharacterized	
   	
   15	
   4.7	
   2.1	
   NaN	
  
YOR195W	
   SLK19	
   biosynthesis	
   MBF	
   15	
   3.9	
   1.7	
   NaN	
  
YDR507C	
   GIN4	
   bud	
   SBF&MBF	
   16	
   6.0	
   2.3	
   7	
  
YER001W	
   MNN1	
   biosynthesis	
   SBF&MBF	
   16	
   3.7	
   1.4	
   8	
  
YGR099W	
   TEL2	
   DNA	
   	
   16	
   9.9	
   7.0	
   8	
  
YGR296W	
   YRF1	
   DNA	
   	
   16	
   5.0	
   2.5	
   11	
  
YGR014W	
   MSB2	
   bud	
   SBF	
   16	
   6.1	
   2.5	
   13	
  
YPL267W	
   ACM1	
   G1/S	
  control	
   SBF&MBF	
   16	
   2.7	
   1.0	
   13	
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YPR075C	
   OPY2	
   stress	
   	
   16	
   4.6	
   2.7	
   14	
  
YIL144W	
   TID3	
   mitosis	
   	
   16	
   2.5	
   1.1	
   15	
  
YKR013W	
   PRY2	
   DNA	
   SBF	
   16	
   4.6	
   1.7	
   16	
  
YCL061C	
   YCL061C	
   bud	
   MBF	
   16	
   2.6	
   1.1	
   18	
  
YDR440W	
   PCH1	
   DNA	
   	
   16	
   5.7	
   2.6	
   20	
  
YDR448W	
   ADA2	
   transcription	
   	
   16	
   10.3	
   4.6	
   23	
  
YEL047C	
   FRD1	
   biosynthesis	
   	
   16	
   4.5	
   2.0	
   24	
  
YPL032C	
   SVL3	
   SPB	
   SBF	
   16	
   3.5	
   1.4	
   30	
  
YLR343W	
   GAS2	
   cell	
  wall	
   	
   16	
   10.5	
   4.7	
   NaN	
  
YNL273W	
   TOF1	
   bud	
   MBF	
   16	
   5.4	
   2.2	
   NaN	
  
YPL153C	
   RAD53	
   cell	
  wall	
   MBF	
   16	
   2.1	
   0.9	
   NaN	
  
YGR188C	
   BUB1	
   mitosis	
   	
   17	
   6.0	
   3.5	
   9	
  
YJL115W	
   ASF1	
   DNA	
   MBF	
   17	
   6.0	
   2.3	
   12	
  
YHR061C	
   GIC1	
   cell	
  wall	
   	
   17	
   4.5	
   2.0	
   13	
  
YBL003C	
   HTA2	
   DNA	
   SBF	
   17	
   3.9	
   1.5	
   16	
  

YOR073W	
   YOR073W	
  
transcription	
  
silencing	
   	
   17	
   3.8	
   1.6	
   21	
  

YDR225W	
   HTA1	
   DNA	
   SBF	
   17	
   3.9	
   1.5	
   23	
  
YDR261C	
   EXG2	
   cell	
  wall	
   	
   17	
   3.5	
   1.4	
   30	
  
YPR202W	
   YPR202W	
   uncharacterized	
   	
   17	
   4.4	
   2.2	
   NaN	
  
YGR221C	
   YGR221C	
   G1/S	
  control	
  /	
  DNA	
   	
   18	
   4.4	
   1.8	
   7	
  
YJL118W	
   YJL118W	
   uncharacterized	
   	
   18	
   12.7	
   7.3	
   11	
  
YLR103C	
   CDC45	
   DNA	
   MBF	
   18	
   3.3	
   1.4	
   11	
  
YOR176W	
   HEM15	
   biosynthesis	
   	
   18	
   6.3	
   2.8	
   11	
  
YML133C	
   YML133C	
   uncharacterized	
   MBF	
   18	
   2.5	
   1.5	
   12	
  
YNL262W	
   POL2	
   DNA	
   	
   18	
   4.1	
   1.5	
   12	
  
YMR076C	
   PDS5	
   mitosis	
   MBF	
   18	
   4.3	
   1.6	
   13	
  
YOL090W	
   MSH2	
   bud	
  	
   MBF	
   18	
   4.6	
   1.7	
   13	
  
YDR451C	
   YDR451C	
   biosynthesis	
   	
   18	
   3.9	
   1.9	
   14	
  
YER095W	
   RAD51	
   biosynthesis	
   MBF	
   18	
   1.5	
   0.8	
   14	
  
YNL166C	
   BNI5	
   bud	
   	
   18	
   5.0	
   1.9	
   14	
  
YMR307W	
   GAS1	
   G1/Scontrol	
  	
  /	
  bud	
   SBF	
   18	
   4.5	
   1.7	
   15	
  
YIL117C	
   PRM5	
   uncharacterized	
   	
   18	
   3.8	
   1.7	
   16	
  
YLR212C	
   TUB4	
   SPB	
   MBF	
   18	
   3.3	
   1.7	
   16	
  
YPR135W	
   CTF4	
   biosynthesis	
   MBF	
   18	
   3.5	
   2.5	
   16	
  
YNL030W	
   HHF2	
   DNA	
   SBF&MBF	
   18	
   3.2	
   1.2	
   17	
  
YOR247W	
   SRL1	
   cell	
  wall	
   SBF	
   18	
   11.6	
   4.4	
   17	
  
YPR141C	
   KAR3	
   mitosis	
   	
   18	
   3.9	
   1.9	
   18	
  
YDR144C	
   MKC7	
   cell	
  wall	
   MBF	
   18	
   3.6	
   1.5	
   22	
  
YLR342W	
   FKS1	
   cell	
  wall	
   	
   18	
   1.3	
   0.6	
   30	
  
YCR065W	
   HCM1	
   DNA	
   SBF&MBF	
   18	
   6.0	
   2.3	
   NaN	
  
YDL102W	
   CDC2	
   biosynthesis	
   MBF	
   18	
   3.4	
   1.7	
   NaN	
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YOL094C	
   RFC4	
   DNA	
   	
   18	
   8.9	
   3.6	
   NaN	
  
YNL339C	
   YNL339C	
   cell	
  wall	
   MBF	
   19	
   2.9	
   1.7	
   7	
  
YDR279W	
   YDR279W	
   G1/Scontrol	
   MBF	
   19	
   6.9	
   2.8	
   9	
  
YGL027C	
   CWH41	
   biosynthesis	
   	
   19	
   NaN	
   NaN	
   11	
  
YER003C	
   PMI40	
   biosynthesis	
   SBF	
   19	
   11.8	
   4.5	
   12	
  
YPL127C	
   HHO1	
   DNA	
   SBF	
   19	
   2.6	
   1.5	
   12	
  
YDL003W	
   MCD1	
   mitosis	
   SBF&MBF	
   19	
   5.3	
   2.0	
   14	
  
YGR140W	
   CBF2	
   bud	
   SBF&MBF	
   19	
   3.8	
   1.7	
   14	
  
YJL201W	
   ECM25	
   uncharacterized	
   	
   19	
   4.4	
   1.8	
   14	
  
YNL263C	
   YIF1	
   transport	
   MBF	
   19	
   10.2	
   4.1	
   14	
  

YPL208W	
   YPL208W	
  
biosynthesis	
  /	
  
translation	
   MBF	
   19	
   4.4	
   2.0	
   14	
  

YDL157C	
   YDL157C	
   uncharacterized	
   MBF	
   19	
   6.5	
   2.9	
   15	
  
YMR238W	
   DFG5	
   cell	
  wall	
   	
   19	
   3.5	
   1.4	
   16	
  
YFR027W	
   ECO1	
   DNA	
   	
   19	
   3.6	
   2.1	
   17	
  
YPL221W	
   YPL221W	
   cell	
  wall	
   	
   19	
   8.6	
   3.5	
   19	
  
YBL002W	
   HTB2	
   DNA	
   SBF	
   19	
   4.4	
   1.7	
   22	
  
YDR247W	
   YDR247W	
   DNA	
   	
   19	
   2.9	
   1.7	
   35	
  
YJL074C	
   SMC3	
   mitosis	
   MBF	
   19	
   3.9	
   1.7	
   NaN	
  
YJL187C	
   SWE1	
   mitosis	
   SBF&MBF	
   19	
   3.5	
   1.4	
   NaN	
  
YNL102W	
   POL1	
   DNA	
   SBF&MBF	
   19	
   5.2	
   2.1	
   NaN	
  
YNR066C	
   YNR066C	
   cell	
  wall	
   	
   19	
   NaN	
   NaN	
   NaN	
  
YPR159W	
   KRE6	
   biosynthesis	
   	
   19	
   4.7	
   1.9	
   NaN	
  
YLL022C	
   YLL022C	
   bud	
  /	
  polarization	
   	
   20	
   2.5	
   1.5	
   9	
  
YPL124W	
   NIP29	
   DNA	
   SBF	
   20	
   3.7	
   1.4	
   13	
  
YDR097C	
   MSH6	
   DNA	
   MBF	
   20	
   3.5	
   1.4	
   14	
  
YML061C	
   PIF1	
   DNA	
   	
   20	
   7.1	
   3.2	
   14	
  
YDL164C	
   CDC9	
   DNA	
   MBF	
   20	
   6.8	
   3.1	
   15	
  
YEL042W	
   GDA1	
   biosynthesis	
   	
   20	
   4.5	
   2.6	
   16	
  
YJL073W	
   JEM1	
   chaperone	
   	
   20	
   11.4	
   4.7	
   17	
  
YNL233W	
   BNI4	
   DNA	
   MBF	
   20	
   4.3	
   1.7	
   19	
  
YDR297W	
   SUR2	
   biosynthesis	
   SBF&MBF	
   20	
   3.3	
   1.2	
   20	
  
YML060W	
   OGG1	
   DNA	
   MBF	
   20	
   3.5	
   1.4	
   21	
  
YBL063W	
   KIP1	
   DNA	
   	
   20	
   8.7	
   4.3	
   26	
  
YML102W	
   CAC2	
   DNA	
   	
   21	
   3.8	
   1.7	
   6	
  
YPL255W	
   BBP1	
   G1/S	
  control	
  /	
  bud	
   SBF	
   21	
   5.8	
   2.2	
   9	
  
YHR153C	
   SPO16	
   sporulation	
   MBF	
   21	
   3.2	
   1.4	
   10	
  
YKL113C	
   RAD27	
   DNA	
   SBF&MBF	
   21	
   7.3	
   2.8	
   10	
  
YHR154W	
   RTT107	
   DNA	
   SBF&MBF	
   21	
   6.5	
   2.5	
   12	
  
YGL093W	
   YGL093W	
   cell	
  wall	
   SBF	
   21	
   2.4	
   1.2	
   13	
  
YJR043C	
   POL32	
   DNA	
   MBF	
   21	
   2.7	
   1.2	
   13	
  
YNR009W	
   NRM1	
   negative	
  regulator	
   SBF	
   21	
   4.3	
   1.6	
   13	
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of	
  MBF	
  
YGL225W	
   GOG5	
   DNA	
   SBF	
   21	
   5.7	
   2.2	
   14	
  
YMR144W	
   YMR144W	
   uncharacterized	
   SBF&MBF	
   21	
   2.9	
   1.1	
   14	
  
YLR457C	
   NBP1	
   SPB	
   	
   21	
   NaN	
   NaN	
   15	
  

YMR305C	
   YMR305C	
  
transcription	
  /	
  
telomere	
   SBF&MBF	
   21	
   5.8	
   2.2	
   15	
  

YOR074C	
   CDC21	
   DNA	
   MBF	
   21	
   11.1	
   4.2	
   15	
  
YOR321W	
   PMT3	
   biosynthesis	
   	
   21	
   NaN	
   NaN	
   15	
  
YBR009C	
   HHF1	
   DNA	
   SBF	
   21	
   3.7	
   1.4	
   19	
  
YPR175W	
   DPB2	
   DNA	
   MBF	
   21	
   5.8	
   2.2	
   20	
  
YDR224C	
   HTB1	
   DNA	
   SBF	
   21	
   5.3	
   2.0	
   21	
  
YDL105W	
   QRI2	
   DNA	
   MBF	
   21	
   7.6	
   3.1	
   NaN	
  
YMR078C	
   CTF18	
   DNA	
   	
   21	
   5.2	
   2.1	
   NaN	
  
YLR383W	
   RHC18	
   biosynthesis	
   SBF&MBF	
   22	
   5.6	
   2.5	
   10	
  
YNL231C	
   PDR16	
   biosynthesis	
   SBF&MBF	
   22	
   7.2	
   2.7	
   10	
  
YGR152C	
   RSR1	
   bud	
   SBF&MBF	
   22	
   5.4	
   2.0	
   12	
  
YGR109C	
   CLB6	
   biosynthesis	
   SBF&MBF	
   22	
   NaN	
   NaN	
   14	
  
YER118C	
   SSU81	
   biosynthesis	
   MBF	
   22	
   6.3	
   2.4	
   16	
  
YAR007C	
   RFA1	
   DNA	
   MBF	
   22	
   7.8	
   3.5	
   17	
  
YJL173C	
   RFA3	
   DNA	
   SBF&MBF	
   22	
   3.5	
   1.5	
   19	
  
YOR084W	
   YOR084W	
   DNA	
   	
   22	
   4.0	
   1.5	
   19	
  
YLR372W	
   SUR4	
   biosynthesis	
   	
   22	
   4.2	
   1.6	
   22	
  
YOR188W	
   MSB1	
   biosynthesis	
   	
   22	
   5.0	
   1.9	
   23	
  
YKL165C	
   MCD4	
   bud	
   	
   22	
   3.4	
   1.4	
   26	
  
YPR034W	
   ARP7	
   transcription	
   	
   22	
   4.7	
   2.7	
   31	
  
YFL008W	
   SMC1	
   DNA	
  /	
  mitosis	
   MBF	
   22	
   8.4	
   3.2	
   NaN	
  
YIL141W	
   YIL141W	
   uncharacterized	
   	
   22	
   17.2	
   8.6	
   NaN	
  
YKL108W	
   YKL108W	
   DNA	
   MBF	
   23	
   5.8	
   2.2	
   10	
  
YKL045W	
   PRI2	
   biosynthesis	
   MBF	
   23	
   7.7	
   3.2	
   11	
  
YML109W	
   ZDS2	
   DNA	
   MBF	
   23	
   5.8	
   2.2	
   13	
  
YEL061C	
   CIN8	
   mitosis	
   	
   23	
   5.3	
   2.1	
   14	
  
YER016W	
   BIM1	
   mitosis	
   MBF	
   23	
   3.6	
   1.6	
   14	
  
YJL019W	
   MPS3	
   SPB	
   	
   23	
   8.1	
   4.0	
   14	
  
YNL072W	
   RNH35	
   cell	
  wall	
   	
   23	
   6.4	
   3.2	
   14	
  
YLR183C	
   TOS4	
   uncharacterized	
   SBF	
   23	
   5.0	
   1.9	
   15	
  
YER019W	
   ISC1	
   biosynthesis	
   	
   23	
   4.8	
   2.4	
   16	
  
YGR153W	
   YGR153W	
   membrane	
  	
   	
   23	
   3.5	
   2.5	
   16	
  
YLL002W	
   KIM2	
   Dna	
   	
   23	
   4.7	
   1.8	
   16	
  
YIL026C	
   IRR1	
   mitosis	
   MBF	
   23	
   4.8	
   2.1	
   17	
  
YDL095W	
   PMT1	
   cell	
  wall	
   	
   23	
   8.7	
   4.3	
   21	
  
YBR010W	
   HHT1	
   DNA	
   	
   23	
   7.2	
   3.0	
   24	
  
YNL165W	
   YNL165W	
   DNA	
   	
   23	
   NaN	
   NaN	
   24	
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YOR114W	
   YOR114W	
   uncharacterized	
   SBF&MBF	
   24	
   3.9	
   1.6	
   13	
  
YOR320C	
   GNT1	
   biosynthesis	
   	
   24	
   4.7	
   1.8	
   13	
  
YNL304W	
   YNL304W	
   DNA	
   	
   24	
   3.6	
   1.8	
   14	
  

YDL010W	
   YDL010W	
  
TF	
  for	
  S	
  phase	
  
expression	
   MBF	
   24	
   6.6	
   2.7	
   16	
  

YNL283C	
   WSC2	
   cell	
  wall	
  /	
  stress	
   SBF	
   24	
   3.0	
   1.1	
   25	
  

YDL197C	
   ASF2	
  
transcription	
  
silencing	
   MBF	
   25	
   2.2	
   1.1	
   10	
  

YOR083W	
   WHI5	
  
negative	
  regulator	
  
of	
  SBF	
   	
   25	
   NaN	
   NaN	
   12	
  

YLR045C	
   STU2	
   mitosis	
   SBF	
   25	
   1.9	
   0.8	
   13	
  
YOR372C	
   NDD1	
   mitosis	
   SBF	
   25	
   3.3	
   1.2	
   18	
  
YDL093W	
   PMT5	
   biosynthesis	
   	
   25	
   3.4	
   1.5	
   20	
  
YNL031C	
   HHT2	
   DNA	
   SBF	
   25	
   3.8	
   1.6	
   22	
  
YBR008C	
   FLR1	
   DNA	
   	
   25	
   1.2	
   0.7	
   28	
  
YNL312W	
   RFA2	
   membrane	
  /	
  vesicles	
   MBF	
   26	
   8.2	
   3.4	
   12	
  
YBL009W	
   ALK2	
   uncharacterized	
   SBF	
   26	
   5.1	
   1.9	
   14	
  
YDR501W	
   PLM2	
   uncharacterized	
   	
   26	
   3.4	
   1.5	
   15	
  
YGL200C	
   EMP24	
   transport	
   	
   26	
   4.6	
   2.1	
   17	
  
YBR070C	
   ALG14	
   biosynthesis	
   SBF&MBF	
   26	
   4.9	
   2.4	
   18	
  
YHR173C	
   YHR173C	
   sporulation	
   SBF	
   26	
   3.5	
   1.4	
   23	
  
YHR098C	
   YHR098C	
   bud	
   	
   26	
   4.0	
   1.8	
   29	
  
YOR355W	
   GDS1	
   uncharacterized	
   	
   26	
   6.9	
   3.4	
   33	
  
YGL163C	
   RAD54	
   DNA	
   	
   27	
   9.9	
   4.4	
   8	
  
YML020W	
   YML020W	
   uncharacterized	
   	
   27	
   3.5	
   2.5	
   8	
  
YGR238C	
   KEL2	
   mitosis	
   	
   27	
   2.9	
   1.7	
   11	
  
YDR307W	
   YDR307W	
   cell	
  wall	
   	
   27	
   NaN	
   NaN	
   12	
  
YNL126W	
   SPC98	
   vacuole	
   	
   27	
   NaN	
   NaN	
   13	
  
YML021C	
   UNG1	
   DNA	
   	
   27	
   3.3	
   1.7	
   14	
  
YOL012C	
   HTA3	
   DNA	
   SBF	
   27	
   5.8	
   2.4	
   21	
  
YOR307C	
   SLY41	
   biosynthesis	
   	
   27	
   2.6	
   1.5	
   30	
  
YHR172W	
   SPC97	
   SPB	
   	
   27	
   3.7	
   1.5	
   NaN	
  
YBR087W	
   RFC5	
   DNA	
   	
   28	
   4.0	
   1.6	
   15	
  
YJL092W	
   HPR5	
   SPB	
   	
   28	
   3.5	
   1.4	
   15	
  
YGL195W	
   GCN1	
   SPB	
   	
   28	
   3.2	
   1.3	
   35	
  
YDR368W	
   YPR1	
   bud	
   	
   28	
   NaN	
   NaN	
   NaN	
  
YMR295C	
   YMR295C	
   uncharacterized	
   	
   28	
   NaN	
   NaN	
   NaN	
  
YBR161W	
   YBR161W	
   DNA	
   	
   29	
   NaN	
   NaN	
   21	
  
YNL181W	
   YNL181W	
   DNA	
   	
   30	
   6.4	
   2.9	
   11	
  
YLR380W	
   YLR380W	
   cell	
  wall	
   	
   30	
   4.6	
   2.1	
   37	
  
YKL127W	
   PGM1	
   biosynthesis	
   SBF	
   31	
   3.5	
   2.5	
   NaN	
  
YKR037C	
   SPC34	
   SPB	
   	
   32	
   3.9	
   1.6	
   15	
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YPR107C	
   YTH1	
   DNA	
   	
   32	
   NaN	
   NaN	
   NaN	
  
YLR154C	
   YLR154C	
   biosynthesis	
   	
   33	
   NaN	
   NaN	
   19	
  
YDL018C	
   ERP3	
   uncharacterized	
   MBF	
   34	
   3.5	
   2.5	
   14	
  
YDR481C	
   PHO8	
   biosynthesis	
   	
   35	
   NaN	
   NaN	
   16	
  
YEL077C	
   YEL077C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   8	
  
YJL119C	
   YJL119C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   8	
  
YLL067C	
   YLL067C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   8	
  
YPL209C	
   IPL1	
   mitosis	
   	
   NaN	
   NaN	
   NaN	
   8	
  
YBL113C	
   YBL113C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   9	
  
YDL163W	
   YDL163W	
   G1/S	
  control	
  /	
  bud	
   	
   NaN	
   NaN	
   NaN	
   9	
  
YHL049C	
   YHL049C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   9	
  
YBL111C	
   YBL111C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YBL112C	
   YBL112C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YEL076C	
   YEL076C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YEL076C-­‐
A	
   YEL076C-­‐A	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YHL050C	
   YHL050C	
   bud	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YHR218W	
   YHR218W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YOR283W	
   YOR283W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   10	
  
YBR089W	
   YBR089W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YEL075C	
   YEL075C	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YER189W	
   YER189W	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YFL064C	
   YFL064C	
   osmosensor	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YLL066C	
   YLL066C	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YLR135W	
   YLR135W	
   SPB	
  /	
  mitosis	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YLR462W	
   YLR462W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YNL289W	
   PCL1	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   11	
  
YCL022C	
   YCL022C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   12	
  
YLR235C	
   YLR235C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   12	
  
YGR151C	
   YGR151C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   13	
  
YHR110W	
   YHR110W	
   DNA	
   MBF	
   NaN	
   NaN	
   NaN	
   13	
  
YHR127W	
   HSN1	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   13	
  
YIL177C	
   YIL177C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   13	
  
YLR233C	
   EST1	
   telomeres	
   	
   NaN	
   NaN	
   NaN	
   13	
  
YPL241C	
   CIN2	
   mitosis	
   	
   NaN	
   NaN	
   NaN	
   13	
  
YDL011C	
   YDL011C	
   mitosis	
   	
   NaN	
   NaN	
   NaN	
   14	
  
YDR053W	
   YDR053W	
   mitosis	
  /	
  DNA	
   	
   NaN	
   NaN	
   NaN	
   14	
  
YDR400W	
   URH1	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   14	
  
YER170W	
   ADK2	
   DNA	
   	
   NaN	
   NaN	
   NaN	
   14	
  
YGL038C	
   OCH1	
   biosynthesis	
   SBF&MBF	
   NaN	
   NaN	
   NaN	
   14	
  
YIL132C	
   YIL132C	
   DNA	
   	
   NaN	
   NaN	
   NaN	
   14	
  
YLR050C	
   YLR050C	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   14	
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YBL035C	
   POL12	
   DNA	
   MBF	
   NaN	
   NaN	
   NaN	
   15	
  
YJL018W	
   MPS3	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   15	
  
YKL066W	
   YKL066W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   15	
  
YKR090W	
   PXL1	
   bud	
   SBF	
   NaN	
   NaN	
   NaN	
   15	
  
YLR151C	
   PCD1	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   15	
  
YDR488C	
   PAC11	
   transport	
   	
   NaN	
   NaN	
   NaN	
   16	
  
YGL185C	
   YGL185C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   16	
  
YDL096C	
   YDL096C	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   17	
  

YDR503C	
   LPP1	
  
TF	
  /	
  M/G1	
  
transcription	
   	
   NaN	
   NaN	
   NaN	
   17	
  

YKL067W	
   YNK1	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   17	
  
YKL103C	
   LAP4	
   protein	
  degradation	
   	
   NaN	
   NaN	
   NaN	
   17	
  
YFL060C	
   SNO3	
   DNA	
   	
   NaN	
   NaN	
   NaN	
   18	
  
YOR248W	
   YOR248W	
   cell	
  wall	
   	
   NaN	
   NaN	
   NaN	
   18	
  
YPR076W	
   YPR076W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   18	
  
YGL060W	
   YBP2	
   mitosis	
   	
   NaN	
   NaN	
   NaN	
   20	
  
YJL217W	
   YJL217W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   20	
  
YLR326W	
   YLR326W	
   cell	
  wall	
   	
   NaN	
   NaN	
   NaN	
   20	
  
YNL015W	
   PBI2	
   protein	
  degradation	
   	
   NaN	
   NaN	
   NaN	
   22	
  
YGR113W	
   DAM1	
   mitosis	
   	
   NaN	
   NaN	
   NaN	
   24	
  
YCL023C	
   YCL023C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   27	
  
YML100W	
   TSL1	
   biosynthesis	
   	
   NaN	
   NaN	
   NaN	
   30	
  
YLR455W	
   YLR455W	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   31	
  
YOR270C	
   VPH1	
   vacuole	
   	
   NaN	
   NaN	
   NaN	
   31	
  
YML117W	
   YML117W	
   telomere	
  silencing	
  /	
  Mitosis	
   NaN	
   NaN	
   NaN	
   33	
  
YKR012C	
   YKR012C	
   uncharacterized	
   	
   NaN	
   NaN	
   NaN	
   43	
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