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SUMMARY

Cellular decisions are made by complex networks
that are difficult to analyze. Although it is common
to analyze smaller sub-networks known as network
motifs, it is unclear whether this is valid, because
these motifs are embedded in complex larger net-
works. Here, we address the general question of
modularity by examining the S. cerevisiae phero-
mone response. We demonstrate that the feedfor-
ward motif controlling the cell-cycle inhibitor Far1 is
insulated from cell-cycle dynamics by the positive
feedback switch that drives reentry to the cell cycle.
Before cells switch on positive feedback, the feedfor-
ward motif model predicts the behavior of the larger
network. Conversely, after the switch, the feedfor-
ward motif is dismantled and has no discernable ef-
fect on the cell cycle. When insulation is broken,
the feedforward motif no longer predicts network
behavior. This work illustrates how, despite the inter-
connectivity of networks, the activity of motifs can be
insulated by switches that generate well-defined
cellular states.

INTRODUCTION

In the past few decades, a large body of work has identifiedmany

components of signaling networks, ordered them in pathways,

and determined many of their biochemical interactions (Gerhart,

1999; Perrimon et al., 2012). However, it has remained difficult

to use this molecular knowledge to accurately predict protein ac-

tivities and cell behavior. This is primarily because there are sim-

ply toomany protein interactions for which the kinetic parameters

are not known, and many of these are nonlinear (Boone et al.,

2007; Yosef and Regev, 2011). Thus, despite the vast increase

in our knowledge of molecular interactions, how cells process in-

formation (i.e., how biological networks integrate dynamic signals

to determine cellular responses) remains poorly understood.

Although it is very difficult to analyze a signaling network in its

entirety, separate timescales of biological interactions often

allow complex networks to be broken into sub-networks that

can be analyzed independently (Alon, 2006). For example,

phosphorylation kinetics are usually very fast compared with

protein synthesis and corresponding concentration changes. In

a network that contains both protein synthesis and phosphoryla-
tion reactions, protein concentrations can be treated as fixed

when analyzing phosphorylation kinetics. Conversely, phos-

phorylation kinetics will be at steady state on the slower time-

scale of protein concentration changes. Thus, separation of

timescales can enable the separation of complex networks into

smaller sub-networks.

Although the separation of timescales simplifies the analysis of

signaling networks, resulting sub-networks often remain too

large to be experimentally tractable. Another method to study

how cells process information is to partition networks into

smaller, more analytically manageable parts known as network

motifs (Alon, 2007b). Motifs, such as feedforward, negative

feedback, and positive feedback loops, have been extensively

analyzed, and their functions enumerated (Ferrell and Xiong,

2001; Ma et al., 2009; Mangan and Alon, 2003; Yosef and Regev,

2011). Indeed, motif analysis has been used in hundreds of

studies to understand a diverse set of functions, from noise

filtering in bacteria to stem cell differentiation (Alon, 2007b; Mac-

Arthur et al., 2009; Narula et al., 2012; Norman et al., 2013; Tsang

et al., 2007). Knowledge of motif functions has also been used to

construct synthetic circuits, including temperature-insensitive

clocks, multicellular pattern generators, and multiplexers (Basu

et al., 2004; Hussain et al., 2014; Regot et al., 2011).

However, a large fraction of synthetic motifs do not behave as

expected when connected to a larger network (Gyorgy and Del

Vecchio, 2014). This is because network motifs are always

embedded within a larger network, which can change motif dy-

namics and function. Because isolated motif analysis does not

consider the effect of all interacting components from the larger

network, the dynamics of the motif can deviate drastically from

theoretical expectations (Guet et al., 2002). For instance, we

consider the case in which two proteins, X and Y, repress each

other nonlinearly so that the binding of at least two X and Y

molecules is necessary for repression. This double-negative

feedback motif is expected to result in a bistable system with

low-X, high-Y and high-X, low-Y stable steady states (Figure 1A).

However, even a slight increase in network complexity by adding

a single interaction can completely change the dynamics of this

double-negative feedback motif. For example, if X also re-

presses another protein Z, which in turn represses Y, the bistable

system can turn into a relaxation oscillator. In this case, X and Y

continuously oscillate, and there are no steady states (Figure 1B).

Thus, if the addition of a single protein into a two-protein double-

negative feedback motif can completely change its function,

when and how can motif analysis be applied to large intercon-

nected biological networks (Figure 1C)?

It has previously been suggested that motif analysis can be

usefully applied if the network is modular, by which we mean
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Figure 1. It Is Not Clear Why Motif Analysis Is Valid for Complex Biological Networks

(A) Schematic and simulated dynamics of a double-negative feedback loop with nonlinearity. The resulting system has two stable fixed points: high X and low Y,

and high Y and low X. The equations for X and Y are dx=dt = ð1=ðk2 + y2ÞÞ � x and dy=dt = ð1=ðk2 + x2ÞÞ � y, where k = 0.1.

(B) Schematic and simulated dynamics of a three-node system, where another node, Z, was added to the double negative feedback loop from (A). Even if

parameters and forms of interactions from (A) are unchanged, the system exhibits sustained oscillations after the addition of Z. The equation for Z is

dz=dt = ð1=ðk2 + x2ÞÞ � z, and Y is repressed by Z so that dy=dt = ð1=ðl2 + z2ÞÞð1=ðk2 + x2ÞÞ � y, where l = 0.01.

(C) Schematic of a larger biological network in which (A) or (B) are sub-networks (motifs). In a larger network, it is unclear where to draw the line in terms of how

many components to include in a reduced motif-basedmodel. That is, it is not clear whether the resulting network is modular or non-modular (i.e., whether or not

any sub-networks can be isolated for separate motif analysis).

(D) Schematic of the cell cycle G1/S network (dark purple) and pheromone pathway (light purple) in which the Fus3-Ste12-Far1 coherent feedforward motif

(shaded green) is embedded. The interactions through which the cell-cycle pathway inhibits the pheromone-inducedMAPK pathway to potentially break network

modularity are shown in red. Upstream inputs, cell size and a-factor, respectively, are shown in gray.
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that it can be broken up into discrete ‘‘modules,’’ or functional

units on the scale of a few proteins (Hartwell et al., 1999). How-

ever, the concept of modularity has remained largely philosoph-

ical, and it is unclear what conditions are required for motif-

based analyses to be valid or why many documented natural

motifs behave modularly. The widespread presence of network

motifs within natural systems suggests that biological networks

may have specific characteristics that modularize them. Impor-

tantly, motifs often do not work similarly well in synthetic net-

works, as synthetic motifs require extensive empirical optimiza-

tion to produce the desired behavior. Thus, synthetic biologists
2 Cell Systems 3, 1–12, August 24, 2016
may be missing some design principles that natural systems

implement. Determining these design principles may greatly

simplify and accelerate the construction of complex synthetic

circuits to perform diverse functions.

To investigate the network design principles necessary for

modularity, we used a well-studied budding yeast network: the

pheromone response. This network contains a feedforwardmotif

that arrests the cell cycle under particular conditions. Here, we

define ‘‘feedforward’’ to mean that a network motif contains an

upstream molecule (here Fus3, a mitogen-activated protein ki-

nase [MAPK]) that modulates the activity of a downstream
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molecule (here Far1, a cell-cycle inhibitor) through two branches

of a pathway. In the case of this budding yeast network, the feed-

forward motif is understood to convey specific, discrete func-

tions to the larger network (discussed below, and see Doncic

and Skotheim, 2013). Most broadly, this work asks how the

structure of this larger network insulates the feedforward motif

into a single functional module so that its isolated analysis

matches its predicted behavior.

The budding yeast uses the MAPK pathway to sense and

respond to mating pheromone secreted by neighboring cells.

The cell bases its decision to mate not only on the current extra-

cellular pheromone concentration but also on its memory of past

pheromone concentrations (Doncic and Skotheim, 2013). Ar-

rested cells also maintain the ability to rapidly enter the cell cycle

if the extracellular pheromone quickly disappears. The ability of

yeast to simultaneously remember past pheromone exposure

over long timescales and respond quickly to rapid changes in

the extracellular concentration has been attributed to the feed-

forward motif discussed above, which is embedded within the

MAPK pathway (Doncic and Skotheim, 2013) (Figure 1D).

Upstream of the feedforwardmotif, pheromone binds a recep-

tor to trigger a cascade of rapid phosphorylation events termi-

nating in the activation of Fus3 (Bardwell, 2004; Chen and

Thorner, 2007). Fus3 activity increases with pheromone concen-

tration over a wide range and rapidly responds to any change in

extracellular pheromone concentration (Yu et al., 2008). As a

part of the feedforward motif, Fus3 promotes the activity of

Far1 both directly, by rapid phosphorylation, and more slowly,

by increasing its synthesis via the Ste12 transcription factor

(Chang and Herskowitz, 1990; Errede and Ammerer, 1989; Gart-

ner et al., 1998; Henchoz et al., 1997; Oehlen et al., 1996). Thus,

the current Fus3 activity determines both the synthesis rate of

Far1 and the fraction of Far1 that is activated by phosphorylation.

The feedforward relationship between Fus3 activity and Far1

has specific functional consequences for the decision to reenter

the cell cycle. When Far1 is phosphorylated and active, it binds

and inhibits the cyclin-Cdk complexes required to drive progres-

sion into the cell cycle (Pope et al., 2014); this prompts cell-cycle

arrest in G1. Far1 is expressed at low levels in the absence of

pheromone so that the cell is sensitive to small increases in pher-

omone-dependent Fus3 kinase activity. An increase in Fus3 ki-

nase activity leads to a rapid increase in the concentration of

phosphorylated, active Far1, which results in cell-cycle arrest

(Doncic and Skotheim, 2013; McKinney and Cross, 1995). Simi-

larly rapid dephosphorylation kinetics ensures that Far1 can be

quickly inactivated should pheromone disappear. Although the

initial cell-cycle arrest dynamics depend on the rapid kinetics

of Far1 activation, the duration of the cell-cycle arrest depends

primarily on the concentration of the activated Far1 pool. Further,

because the Far1 synthesis rate is dependent on the pheromone

concentration through Fus3 activity (Doncic and Skotheim,

2013; Takahashi and Pryciak, 2008; Yu et al., 2008), this depen-

dence imparts cellular ‘‘memory’’: cells previously exposed to

higher pheromone concentrations have more Far1. Because

active Far1 is determined by both the total Far1 as well as the

current Fus3 activity, cells that have previously accumulated

more Far1 are able to stay arrested for longer at lower phero-

mone concentrations. Thus, cells base their decision to reenter

the cell cycle on both current and past pheromone concentra-
tions. In this way, the feedforward motif converts a dynamic

Fus3 signal into Far1 activity to provide both memory and rapid

response (see the Supplemental Information for detailed infor-

mation on the feedforward motif and its analytical description;

Figures S1A–S1C).

Even though studying Far1 in the context of the feedforward

motif has been illuminating, it is unclear why this motif should

behave as an independent module, because it is not biochemi-

cally isolated from the rest of the network. To the contrary, it is

actively regulated by other network components (Figure 1D).

Specifically, Fus3 activity inhibits upstream MAPK pathway

components through negative feedback, and cyclin-dependent

kinase activity from the cell-cycle pathway inhibits Far1 and

theMAPK scaffold protein Ste5 (Bhattacharyya et al., 2006; Gar-

renton et al., 2009; Strickfaden et al., 2007; Yu et al., 2008). Here,

we resolve this conundrum.We show thatmodularity of the feed-

forwardmotif results from the presence of multiple positive feed-

backs that convert an analog input (cyclin-Cdk activity) into an

ON/OFF digital output (cell-cycle reentry). In the OFF state, feedfor-

ward motif dynamics are effectively insulated from the cell cycle,

and their behavior dominates the cell’s response to pheromone,

whereas in the ON state, cyclin-Cdk1 activity dominates, the cell

cycle is initiated, and the feedforward motif is dismantled.

Because many cellular decisions are switch-like, we expect

this to be one of many examples in which switch-like transitions

modularize complex biological networks.

RESULTS

The Feedforward Motif Regulating Far1 Is Insulated
from the Cell Cycle during Arrest
That the feedforward motif analysis predicts cellular behavior

suggests a modular network structure. Evidence for this is

described above and further detailed in the supporting material

and Figure S1. Specifically, the nuclear Far1 concentration grad-

ually increases in arrested cells that are exposed to constant

intermediate pheromone concentrations, consistent with the

feedforward motif model. Then, it is rapidly degraded at cell-cy-

cle reentry (Figures S1G and S1H; Doncic and Skotheim, 2013).

This is in stark contrast to what would be expected from a grad-

ually increasing cell-cycle signal gradually increasing the degra-

dation rate of Far1 (compare Figures S1G and S1H with Figures

S1B and S1E). This suggests that the feedforward motif is insu-

lated from the cell-cycle signal during arrest.

The power of motif analysis is that it is able to predict the sys-

tem’s response to any dynamic input signal, nomatter how com-

plex. If the feedforward motif is indeed insulated, the simulation

of motif dynamics should be able to predict Far1 dynamics even

for dynamic extracellular pheromone concentrations. To test

this, we exposed cells to either a series of alternating 2 hr

12 nM pulses and 1 hr 3 nM pulses of extracellular pheromone

or a step increase to constant 12 nM pheromone usingmicroflui-

dics, as previously described (Doncic et al., 2011, 2013) (Figures

2A–2C). In these cells, we measured nuclear Far1 dynamics by a

Far1-GFP fusion protein expressed from its endogenous locus

and Whi5-mKok fusion protein that was used to identify the G1

cell cycle phase and the nucleus (Costanzo et al., 2004; de Bruin

et al., 2004; Doncic et al., 2011; Tsutsui et al., 2008). We focus on

the nuclear pool of Far1 because it determines cell-cycle arrest.
Cell Systems 3, 1–12, August 24, 2016 3



Figure 2. The Feedforward Motif Predicts Far1 Dynamics in Response to Complex Input Signals

(A) Schematic of the input signals for experiments shown in (B) (top) and (C) (bottom).

(B) Cells were exposed to an alternating series of 2 hr 12 nM and 1 hr 3 nM extracellular pheromone pulses, and nuclear Far1 was measured and compared with

model results. We considered cells that were born and arrested between 1 and 1.5 hr after the beginning of the first 12 nM pheromone pulse. Traces were aligned

at the beginning of the first 3 nMpulse. Shaded green denotes the region containing themean nuclear Far1 concentration and associated SE. The red overlaid line

denotes the prediction from the feedforward motif model. Note that the model was not fit to the data. The only input to the model from the experiment is the input

signal (A) and the measured cell growth rate.

(C) The model and experiment comparison for cells exposed to a step increase from 0 to 12 nM pheromone. Traces were aligned at the beginning of cell-cycle

arrest, as determined by the appearance of Far1 in the nucleus. In contrast to (B), the nuclear Far1 concentration steadily increases from the beginning of the

experiment and stabilizes at a high steady-state concentration.
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When cells were exposed to series of alternating pulses of

pheromone, Far1 concentration did not drop after the first

3 nM pulse but did drop during the second 3 nM pulse. Accord-

ing to the model, this is because during the first pulse, dilution, a

product of current Far1 concentration and cell growth rate, is

balanced by Far1 synthesis. During the second 3 nM pulse,

Far1 has already increased to a higher concentration so that

the dilution/degradation term is larger than the synthesis term,

and the Far1 concentration decreases. In contrast, when cells

were exposed only to 12 nM pheromone, Far1 monotonically

increased toward a steady-state concentration (Figure 2C).

The good agreement between model and experiment further

supports the hypothesis that the feedforward motif is effectively

insulated from the cell cycle.

The Cell-Cycle Control Network Digitizes Gradual
Analog Input Signals
Modularity requires that we be able to separately consider the

upstream pheromone pathway components, the feedforward

motif, and the downstream cell cycle regulatory network. The dy-

namics of upstream pheromone components are determined by

fast phosphorylation kinetics on the minute timescale (Yu et al.,

2008). This means that the activities of these components are

in steady state on the hour-long timescales of protein accumula-

tion and cell-cycle progression. Thus, the upstream pheromone

pathway dynamics should be separate from the feedforward

motif because of a separation of timescales. However, it is un-

clear why the dynamics of the feedforward motif could be use-

fully modeled without considering the effect of the cell-cycle

signal, which is likely to be gradually increasing during arrest

as the cells get larger.

To understand why the feedforward motif is insulated from

the cell-cycle signal, we decided to examine the dynamics of

the cell-cycle signal during pheromone arrest to determine

how cells drive cell-cycle reentry. Although the concentration

dynamics of cell-cycle proteins in cycling cells have recently

been reported (Schmoller et al., 2015), it is not clear if the dy-

namics of these proteins are the same in pheromone-arrested

cells. Thus, we examined the dynamics of cell-cycle proteins
4 Cell Systems 3, 1–12, August 24, 2016
in cells that are exposed to a step increase in pheromone up

to an intermediate concentration (3 nM a-factor). At low to inter-

mediate pheromone concentrations, cells initially arrest and

prolong their G1 before eventually reentering the cell cycle

(Doncic and Skotheim, 2013).

In both cycling and pheromone-arrested cells, upstream sig-

nals triggering cell division that are driven by cell growth are ex-

pected to change slowly and to operate on the timescale of the

cell growth rate (Figures 3A and 3B). The main way cell growth

triggers division is through the upstream G1 cyclin Cln3 and

the cell-cycle inhibitor Whi5. In cells cycling without pheromone,

Whi5 is diluted during G1 by cell growth, while Cln3 concentra-

tion is constant (Schmoller et al., 2015).While Cln3 concentration

is constant in cycling cells, this may not be the case in phero-

mone-arrested cells. We therefore measured Cln3 concentration

during a pheromone-induced cell-cycle arrest. Because the con-

centration of wild-type (WT) Cln3 cannot be measured using

fluorescence microscopy because of its rapid and constitutive

degradation (Tyers et al., 1992), we examined amutant strain ex-

pressing a stabilized, more abundant, but less active Cln3 pro-

tein previously characterized and used to examine G1/S cell cy-

cle regulation (mCitrine-CLN3-11A) (Bhaduri and Pryciak, 2011;

Liu et al., 2015; Schmoller et al., 2015). In contrast to freely

cycling cells, in which Cln3-11A was measured to be constant

(Schmoller et al., 2015), Cln3-11A concentration gradually

increased during pheromone-induced arrest on a similar time-

scale as cell growth (Figures 3C and 3D). This observation is

consistent with a previous fluorescence in situ hybridization

measurement that found the mean number of Cln3 mRNA to in-

crease during pheromone arrest (Doncic and Skotheim, 2013).

Cln3 has been suggested to directly inhibit Far1 (Alberghina

et al., 2004). If this were true, the gradual increase in Cln3 would

break modularity so that the feedforward motif could not be

analyzed independently of Cln3. However, our observation of

Far1 stability during arrest suggests that Cln3-dependent desta-

bilization of Far1 is relatively unimportant during pheromone

arrest.

Next, we analyzed the concentration dynamics of the cell-cy-

cle inhibitor Whi5, the primary target of Cln3. In contrast to



Figure 3. Timescales of Cell-Cycle Proteins Get Progressively Shorter as the Signal Moves from Upstream Inputs to Downstream Positive

Feedback Elements

(A and B) Example (A) and mean single-cell traces of volume (B) for cells aligned at the start of arrest. Volume increases approximately linearly during pheromone

arrest, in agreement with previous measurements in similar conditions (Goranov et al., 2009).

(C and D) Example (C) andmean single-cell traces of mCitrine-Cln3-11A concentration (D) for cells aligned at the start of arrest. Expression of the upstream cyclin

Cln3 gradually increased during pheromone arrest.

(E and F) Example (E) andmean single-cell traces of the cell-cycle inhibitor Whi5-mKok (F) for cells aligned at the start of arrest. Whi5 concentration was constant

in cells exposed to 3 nM pheromone.

(G and H) Example (G) andmean single-cell traces (H) of a transcription reporter (CLB5pr-GFP) for the synthesis of the downstream cyclin Clb5. Single-cell traces

were aligned at the activation of the integrated CLB5 promoter expressing GFP.

(I and J) Example (I) and mean single-cell traces of Sic1-GFP (J), a stoichiometric inhibitor of Clb5-Cdk complexes. Single cells were aligned at cell-cycle reentry,

which is coincident with Sic1 degradation.

(K) The timescales of volume increase, Cln3-11A upregulation, Clb5 synthesis, Sic1 degradation, and nuclear Far1 degradation during pheromone arrest.

Timescales get progressively shorter as one moves from cell-cycle inputs (e.g., volume increase and Cln3) to downstream elements such as Sic1 degradation.

In (B), (D), (F), (H), and (J), cell-specific fluorescence background was subtracted before averaging the single-cell traces, and shaded intervals indicate SEM. The

timescale for nuclear Far1 degradation is obtained from the data shown in Figures S1G and S1H. Bars in (K) denote 90% confidence intervals for median

computed using 10,000 bootstrap simulations (p < 0.001 for all pairwise comparisons except for Sic1 versus Far1nuc).
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cycling cells, for whichWhi5 dilution is the primary trigger for G1/

S transition (Schmoller et al., 2015), Whi5 concentration was

relatively constant in cells arrested in 3 nM pheromone (Figures

3E and 3F). This can be explained by the fact that the Whi5 syn-

thesis rate is independent of cell size (Schmoller et al., 2015) and

that the rate of volume increase is lower in pheromone-arrested

cells than cycling cells (Goranov et al., 2009). Thus, at intermedi-

ate pheromone concentrations, Whi5 synthesis is balanced by

cell growth. At saturating pheromone concentrations, cells

form multiple shmoos and grow even more slowly, such that
Whi5 concentration can even increase over time (Figure S2).

The gradual increase in Whi5 concentration in these conditions

likely contributes to the fact that the vast majority of these cells

never reenter the cell cycle. At intermediate pheromone concen-

trations, however, cells gradually increase Cln3 relative to Whi5

during arrest to drive cell-cycle reentry. The related G1 cyclins

Cln1 and Cln2, although crucial for coherent cell-cycle entry in

cycling cells (Skotheim et al., 2008), have little effect on cell-cycle

reentry kinetics in pheromone-arrested cells (Doncic and Sko-

theim, 2013), so we did not analyze their dynamics here.
Cell Systems 3, 1–12, August 24, 2016 5
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That Far1 concentration does not decrease until cell-cycle

reentry suggests that the gradually increasing upstream Cln3/

Whi5 signal does not affect Far1 during pheromone arrest. This

implies that Far1 stability, which abruptly decreases at cell-cycle

reentry, is regulated mainly by downstream cyclin-Cdk activity.

Because cells lacking Clb5, and the related cyclin Clb6, are

slower in emerging from a pheromone-induced arrest (Doncic

and Skotheim, 2013), we hypothesized that it is the rapid activa-

tion of these B-type cyclins that underlies the digital aspects of

nuclear Far1. To examine the B-type cyclin switch, wemeasured

CLB5 expression and the concentration of the B-type cyclin

inhibitor Sic1 (Schwob et al., 1994; Schwob and Nasmyth,

1993). We examined CLB5 expression using a CLB5 promoter

(1 kb upstream of the gene) driving the synthesis of GFP. We

observed an abrupt activation of the CLB5 promoter near the

time of cell-cycle reentry (Figures 3G and 3H). We also examined

the concentration dynamics of Sic1-GFP, expressed from the

endogenous locus, and found an abrupt drop in Sic1 concentra-

tion at the point of cell-cycle reentry, consistent with previous re-

sults for cells cycling in the absence of pheromone (Figures 3I

and 3J) (Yang et al., 2013). The rapid increase in B-type cyclin

synthesis and decrease in its inhibitor Sic1 implies a rapid in-

crease in B-type cyclin activity that is likely to lead to a drop in

Far1 stability and thereby lead to the observed steep drop in

nuclear Far1. Thus, the switch-like digital aspects of B-type cy-

clin activation likely underlie the modularity of the network

comprising cell-cycle reentry and pheromone pathways.

Switch-like Cell-Cycle Reentry Underlies Network
Modularity
Our analysis so far indicates that the network regulating cell-cy-

cle reentry is modular because of switch-like activation of B-type

cyclins, which have previously been shown to degrade Far1

(Doncic et al., 2015). Prior to cell-cycle reentry, B-type cyclin-

Cdk activity is virtually nonexistent because of both its low syn-

thesis and the presence of Sic1. At the G1/S transition, B-type

cyclin synthesis increases and Sic1 is degraded so that B-type

cyclin activity quickly increases to destabilize Far1. Many posi-

tive feedback loops act to sharpen the G1/S switch, including

positive feedback of Cln1 and Cln2 on their own synthesis, and

a double-negative feedback between the B-type cyclins Clb5

and Clb6 and their inhibitor Sic1 (Kõivomägi et al., 2011; Sko-

theim et al., 2008; Yang et al., 2013). As one approaches the

point of commitment to division, timescales of activation dy-

namics of proteins that control the cell cycle become faster

and faster, so that the amount of time taken to switch into the

cell cycle is much shorter than arrest duration (Figure 3K).

Thus, for the vast majority of the arrest, cell-cycle pathway activ-

ity is effectively zero and can be neglected. This enables the

feedforward motif to function as an isolated module within the

network controlling cell-cycle reentry. However, if downstream

cyclin activation were less switch-like, or if Cln3-Cdk were able

to target Far1 for degradation, we would predict the breakdown

of network modularity. Thus, we hypothesized that the degree of

network modularity is determined by how switch-like B-type cy-

clin activation is.

To determine the relationship between switch-like transitions

and network modularity, we developed an ordinary differential

equation model that describes the G1/S cell cycle and phero-
6 Cell Systems 3, 1–12, August 24, 2016
mone pathways using five proteins and two input signals (cell

size and pheromone). To construct this model, we added the in-

hibition of Far1 by downstream cyclins to the feedforward model

(Figure 4A; see the Supplemental Information for extended

mathematical description). In our simplified model, we subsume

all downstream cyclin activity, including Cln1, Cln2, and Clb5

and Clb6, into a combined variable called Clb5/6. Moreover,

we control how switch-like the transition is using a single param-

eter that combines all of the cell-cycle positive feedbacks into a

single relationship between upstream cell-cycle components,

Cln3/Whi5, and the downstream activation of B-type cyclins.

The cell-cycle input signal Cln3/Whi5 gradually increases as cells

are arrested and is modeled using graded Michaelis-Menten ki-

netics. Cln3/Whi5 activates Clb5/6, either gradually or sharply.

We characterize the degree of how switch-like the transition

is using a Hill equation with Hill coefficient, n, so that

output = ðVmax: input
n=ðinputn +Kn

mÞÞ, whereKm is the input value

at which output is half of its potential maximum, Vmax (Figure 4B).

When n = 1, the relationship between Cln3/Whi5 and B-type cy-

clin activation is graded. As n increases, so does the sharpness

of the transition. It is of particular importance that for a switch-

like transition, the initial increase in the input signal does not

result in a significant increase in the output until a threshold level

is reached. Around the threshold, output rapidly increases to a

very high level. For high enough n, the switch produces an

analog-to-digital conversion of the upstream signal.

Despite greatly simplifying the complexity of the G1/S cell-cy-

cle and pheromone pathways, our minimal model still contains

eight differential equations, eight initial conditions, and 18 pa-

rameters. As with any mathematical model of biological net-

works, we do not have accurate in vivo measurements for

many of these parameters. Instead of trying to determine the

values of these parameters by fitting our model to limited data,

we simply chose parameters expected to be the correct order

of magnitude on the basis of known cellular reaction rates (see

Tables S1 and S2). Themodel was then simulated for 3 nM a-fac-

tor to ensure that the kinetics of different proteins were qualita-

tively in agreement with experimental observations (Figure S3).

The model was then tested at a range of pheromone concentra-

tions to verify that it can predict increasing arrest durations at

increasing pheromone concentrations (Figure S4).

After establishing that the minimal computational model ex-

hibits the basic features of arrest dynamics, we examined the ef-

fect of the switch parameter, n, on Far1 dynamics (Figure 4C).

We compared the results of our computational model with those

predicted by an isolated mathematical analysis of the feedfor-

ward motif. For this comparison, we devised a deviation metric

that indicates the percentage deviation between two time-

dependent Far1 curves. To account for differences in arrest

duration, we calculated the deviation from the feedforward

model per unit time. Then, the percentage difference for each

point on two corresponding curves is found, and these values

are averaged over all points. When n = 1, the activation of down-

stream cyclins was gradual, and the percentage deviation was

found to be �33% (Figures 4D and 4F). As n was increased,

downstream cyclins become more and more switch-like, and

the deviation between the computational model and the ideal

feedforward motif consistently decreased to less than 10% for

n = 4 and n = 8 (Figures 4E and 4F).



Figure 4. A Minimal ODE Model of the G1/S Cell Cycle and Pheromone Pathways Suggests that the Cell-Cycle Switch Underlies Network

Modularity

(A) Schematic of the ODEmodel. All positive feedbacks that exist in the G1/S cell-cycle pathway are incorporated into a single positive feedback element (shown

in light blue) with a single, tunable parameter, n.

(B) The switch parameter, n, determines how switch-like the cell cycle transition is. As n increases, the signal transmission becomes more and more switch-like.

For higher values of n, signal transmission is digital so that nearly no downstream signal is transmitted until a threshold is reached.

(C) Far1 dynamics from simulations with increasing values of the switch parameter n for simulations at 3 nM pheromone. As n increases, simulated nuclear Far1

dynamics approach the result from an isolated motif analysis (see Figures S1A–S1C).

(D and E) Schematics of how the deviation of Far1 dynamics from the ideal motif dynamics is calculated. Arrest is taken to begin after the initial fast phos-

phorylation kinetics (�5 min) and to end when nuclear Far1 concentration reaches 50% of its peak value. Far1 levels are normalized at the start of the arrest to

match the Far1 levels predicted by the isolated feedforward analysis (green), and deviation is calculated as jFar1motif� Far1modelj/Far1motif for equally spaced time

points between arrest start and arrest end. Examples shown are for simulations at 4 nM pheromone. (D) n = 1 (dark blue) (37% deviation); (E) n = 4 (red) (9%

deviation).

(F) Deviation from ideal motif dynamics for increasing switch parameter n. Deviation was calculated for simulations at 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 nM

pheromone and the mean and SD for all simulations at the same switch parameter n are shown (p < 0.001 for all pairwise comparisons).
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To determine the parameters affecting feedforward motif

modularity, we performed a local sensitivity analysis. In this anal-

ysis, all parameter values were individually varied, and the devi-

ation metric was recalculated. Of the 18 total parameters of the

model, deviation was sensitive to only 4 parameters, including

the switch parameter n, the Clb5/6 concentration required to

reach half-maximum self-activation rate, the rate at which Far1

is degraded by Clb5/6, and the rate at which Far1 is activated

by Fus3 (Figure S5). The deviation is sensitive to the Far1 activa-

tion rate by Fus3, because its decrease disrupts the separation

of timescales between the feedforward motif and the upstream

MAPK. That is, if the upstream MAPK cascade were slow

enough to be on the same timescale as the transcriptional time-

scale of the feedforward motif, the dynamics of Fus3 activity

would have to be incorporated into an accurate mathematical

analysis of the feedforward motif. The separation of timescales

has been previously recognized as a means by which the dy-

namics of complicated biological networks can be simplified

(Alon, 2007a; Atay and Skotheim, 2014). As for the other three
parameters, they directly affect the sharpness of the switch at

the interface between the two pathways (Figure S5). Taken

together, our computational model supports the hypothesis

that the feedforwardmotif is effectively insulated from the cell cy-

cle during pheromone arrest by a switch-like transition.

Bypassing Positive Feedback Switches Results in a Loss
of Network Modularity
To experimentally test the predicted relationship between

switches and modularity, we rewired the interface between the

G1/S cell cycle and pheromone pathways to reduce how

switch-like the transition is. To do this, we replaced endogenous

FAR1 with an allele with the 92nd residue mutated from leucine

to proline (FAR1-L92P) (Doncic et al., 2015). This mutation gen-

erates an additional Cdk consensus phosphorylation site that

likely increases the ability of cyclin-Cdk complexes to target

Far1 for degradation. We predict that this will break modularity

by making Far1 degradation responsive to even the low levels

of cyclin-Cdk complexes present during arrest before the
Cell Systems 3, 1–12, August 24, 2016 7



Figure 5. Mutation Sensitizing Far1 to Cy-

clin Expression Breaks Network Modularity

(A) Network schematic indicating likely effect of

Far1-L92P mutation. The inhibition of Far1-L92P

by Cln3 may be indirect.

(B) Nuclear Far1-GFP dynamics for FAR1-GFP

MET3pr-CLN3 and 12xFAR1-L92P-GFP MET3pr-

CLN3 cells that were arrested at 12 nM in the

absence of Cln3 for 3 hr before being exposed to a

30 min pulse of Cln3. Importantly, this Cln3 pulse

was not sufficient to drive cell-cycle reentry.

Shaded region indicates the SEM.

(C) The mean nuclear Far1 degraded by the Cln3

pulse. Bars denote SEM for three biological repli-

cates (p < 0.001).

(D and E) Example trace (D) and normalizedmeans

(E) of 12xFAR1-L92P-GFP cells exposed to a step

increase from 0 to 3 nM pheromone. For com-

parison, we normalize and replot the data from

Figure S1H forWT FAR1-GFP cells. Note that Cln3

in these cells is expressed from its endogenous

locus. Traces are aligned at cell-cycle reentry and

shaded region indicates the SE of the normalized

means.

(F) Median percentage change in nuclear Far1

concentration during pheromone arrest for cells

from (E) of the indicated genotype, calculated as

the difference between nuclear Far1 concentrations just before reentry and at the beginning of arrest. This difference is normalized by dividing with the nuclear

Far1 concentration at the beginning of arrest. Bars denote the 90% confidence intervals computed using 10,000 bootstrap simulations (p < 0.001).
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activation of the positive feedback loops (Figure 5A). Because

the L92P mutation shortens half-life 2-fold to 3-fold during arrest

and a single copy of FAR1-L92P does not arrest as readily as

WT, we examined cells with �12 copies, which arrest for similar

durations as WT cells in response to pheromone (Doncic et al.,

2015).

That the L92P mutation reduced Far1 half-life during arrest

suggests that upstream cyclins can promote its degradation

during arrest. To test this, we examined the response of FAR1-

GFP and 12xFAR1-L92P-GFP cells expressing a pulse of Cln3.

Importantly, this pulse of Cln3 was below the threshold required

to trigger cell-cycle reentry. To do this, the endogenous CLN3

promoter was replaced by the methionine-regulated MET3 pro-

moter (Charvin et al., 2008; Mao et al., 2002). Asynchronously

dividing cells were exposed to 12 nM pheromone for 3 hr and

then to 12 nM pheromone media lacking methionine to activate

the expression of MET3pr-CLN3 allele for 30 min. Then methio-

nine was added back to the media to turn MET3pr-CLN3 off.

Throughout the experiment, we measured the dynamics of nu-

clear Far1-GFP expressed from either WT or L92P alleles. In

WT cells, the decrease in Far1 was minimal (Figure 5B). Indeed,

when Cln3 pulses were extended beyond 30min, cells reentered

the cell cycle and completely degraded their nuclear Far1 pool,

suggesting that positive feedbacks that activate downstream cy-

clins Clb5/6 are triggered for longer Cln3 pulses. This is consis-

tent with the feedforwardmotif being insulated from any changes

in Cln3 expression until cell-cycle reentry inWT cells. In contrast,

when this experiment was repeated using 12xFAR1-L92P cells,

methionine-controlled Cln3 expression greatly reduced nuclear

Far1 even when cells did not reenter the cell cycle (Figure 5B).

In these experiments, more than four times as much Far1 was

degraded in 12xFAR1-L92P-GFP cells compared with FAR1-
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GFP cells (Figures 5C and S6). These experiments suggest

that Far1-L92P dynamics are not insulated from changes in

Cln3 expression in pheromone-arrested cells.

The sensitivity of Far1-L92P to sub-threshold levels of Cln3

suggests that modularity might be lost by the introduction of

this mutation. To test this, we examined Far1 dynamics in

12xFAR1-L92P cells in which CLN3 is now expressed from its

native promoter. In these cells, Far1 levels gradually decreased

during pheromone arrest until cell-cycle reentry (Figures 5D

and 5E). This is consistent with non-modular motif analysis and

our extended mathematical model with switch parameter n = 1

(compare Figures 5D and 5E with Figures S1E and 4D). Impor-

tantly, this contrasts with the observation of Far1 dynamics in

WT cells and the prediction from the feedforward motif analysis,

which both show that Far1 levels gradually increase until cell-cy-

cle reentry (Figures 5F, S1B, and S1H). Taken together, these ex-

periments demonstrate that the modularity of the feedforward

motif is broken if upstream cyclin-Cdk complexes can target

Far1 for degradation prior to cell-cycle reentry, that is, if the

switch-like interface between the cell cycle and pheromone

signaling is broken.

DISCUSSION

Although network motifs are commonly used to study signaling

pathways, the validity of this approach and why it works as ex-

pected are unclear, because these motifs are always embedded

in larger biological networks (Mellis and Raj, 2015). Here, we

examine one specific case to find that motif-based analysis is

valid only if the network is modular, that is, that the analyzed

motif is insulated from other parts of the network. Motifs can

be insulated from the effects of gradually changing inputs by



Figure 6. Summary Schematic

(A) Incorporation of switch-like elements that digitize signals enhances network modularity, which allows motif-based analysis. The expected motif dynamics

(middle) match observed motif outputs (right) when a digitizer element insulates the motif from gradually changing analog inputs (modular case, top). In contrast,

in the absence of such digitizer elements, analog signals can result in striking differences between expected and observed motif dynamics (non-modular case,

bottom).

(B) For a transition to modularize a network, two conditions need to be met: (1) timescales of the transition must be much smaller than timescales of the period

prior to the transition, and (2) the scale of the change through the transition must be larger than changes prior to the transition.
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positive feedbacks, which can serve as digitizers that convert

analog inputs into binary signals (Figure 6A). In the absence of

such digitizers, motif dynamics deviate from the theoretical

expectation because the activity of motif elements will be

affected by changes elsewhere in the network.

Our analysis suggests that there are two requirements for a

digitizer to modularize a network and insulate a motif from a

changing input signal (Figure 6B). First, there needs to be a rapid

transition. In the case of the feedforward motif, this means that

the timescale of the reentry switch needs to be much faster

than the timescale of arrest duration. Such a separation of time-

scales has been recognized as an important concept that allows

the simplification of the mathematical analysis of complex bio-

logical phenomena (Alon, 2006, 2007a; Atay and Skotheim,

2014; Del Vecchio et al., 2008). Second, the change in output

during the transition needs to be much larger than the change

in output prior to the transition so that the output during arrest

can be neglected. In the feedforward case we examined, this

means that that the change in the level of B-type cyclin activity

during the cell-cycle switch must be significantly larger than its

level during arrest.

Although the motif approach has limitations, the conditions

under which it is valid may still be widespread in natural

biological networks. This is because switch-like elements that

modularize networks are likely widespread and not unique to

the network comprising cell-cycle and pheromone pathways.

Recent single-cell RNA sequencing studies of mammalian cells

support this view (Jaitin et al., 2014; Treutlein et al., 2014). These

studies show that the vast majority of cells exist in few well-

defined transcriptional states. The absence ofmany cells in inter-

mediate transcriptional states implies that transitions between

these states are rapid and switch-like. In our case, network

modularity can be thought to result from the existence of two
distinct cell states, the low-CDK activity state before the G1/S

transition and the high-CDK activity state of being in the cell

cycle. These two states are separated by a rapid positive feed-

back-driven transition so that from the point of view of the

pheromone pathway, the cell-cycle state can be viewed as

approximately binary (Skotheim et al., 2008). Because CDK in

the low-activity state is largely unable to target Far1 for degrada-

tion, the feedforward motif is able to predict Far1 dynamics. This

illustrates how, despite the apparent interconnectivity of many

pathways, networks can be broken up into motifs insulated

from the effects of changing inputs by the switches generating

well-defined cellular states.

Consistent with this theme of insulation of different pathways,

it was recently shown that although the yeast osmotic stress and

pheromone-induced MAPK pathways share upstream compo-

nents, these two signals are insulated from each other (Patterson

et al., 2010). That is to say, activation of one pathway neither trig-

gers nor interferes with signal propagation through the other

pathway despite their shared components. This insulation is

another facet of network modularity. However, although modu-

larity is likely widespread, it is important to note that networks

cannot be arbitrarily decomposed into motifs on the basis of

network schematics. Still, our analysis suggests that positive

feedback loops or any other known switch-like elements are

good candidates for separating distinct modules.

Although it is generally difficult to say why biological networks

should be modular, it is tempting to speculate in our specific

case. Here, the insulation of Far1 from gradually increasing

cell-cycle inputs ensures its stability on the timescale of cell

growth. This, and the fact that the Far1 synthesis rate is deter-

mined by the current extracellular pheromone concentration, en-

ables the current Far1 level to encode a memory of past phero-

mone exposure. Amutation (FAR1-L92P) that breaksmodularity,
Cell Systems 3, 1–12, August 24, 2016 9
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by allowing cell-cycle inputs to affect Far1 stability during arrest,

also results in a loss of memory of past pheromone exposure

(Doncic et al., 2015). Modularity may therefore have arisen

because of selection for cellular memory. Although it was initially

proposed that bistability was a property of the MAPK pathway

per se, our work is consistent with later work concluding that

MAPK activity responds in a graded fashion to extracellular pher-

omone (Takahashi and Pryciak, 2008; Yu et al., 2008). As shown

here, bistability arises from the interaction of the MAPK and cell-

cycle pathways. In our view, the graded MAPK response during

pheromone arrest is important to allow the cell to measure dura-

tion and amplitude of pheromone exposure.

Here, we showed hownetworkmodularity isolates the feedfor-

wardmotif, likely so that it can accurately process and remember

dynamic pheromone signals. However, non-modular networks

might also be able to perform this function. When networks

were computationally evolved to perform a specific function,

the resulting networks were often non-modular, and it was often

not clear how a specific node might affect network function

(Thompson, 1997). This work implies that additional selective

pressures are likely required for the evolution of modular biolog-

ical networks. One possibility is that modularity is a byproduct of

selection for the switch-like transitions that allow cells to make

rapid decisions and prevent mixed cellular states with severe

fitness costs (Doncic et al., 2011; Strickfaden et al., 2007). A sec-

ond possibility is that modularity itself may be selected for as a

way to enhance network evolvability. Consistent with this notion,

computational evolution studies have shown that alternating se-

lection pressures result in modular networks (Kashtan and Alon,

2005). These selected networks tend to have distinct pathways

to perform different functions that can be rapidly and indepen-

dently tuned by mutation and selection. Interestingly, a recent

computational study found that fluctuating selective pressures

can result not only in increased evolvability, but also in increased

nonlinearity and bistable dynamics (Kuwahara and Soyer, 2012).

Thus, modularity, bistability, and evolvability may be deeply

intertwined.
EXPERIMENTAL PROCEDURES

Strains and Media

All strains are derived from W303 and were constructed using standard

methods (see Table S3). Strains were grown in yeast synthetic completemedia

lacking methionine with 2% glucose (SCD-methionine) unless otherwise indi-

cated. All media were supplemented with 20 mg/ml casein to decrease a-fac-

tor surface adhesion to microfluidics plates.

Measurement of Fluorescent Proteins

Zeiss Observer Z1 microscope with a 63X/1.4NA oil immersion objective was

used to take images every 6 min in all microscopy experiments. Media condi-

tions were controlled using a Cellasic microfluidics device. Image segmenta-

tion, tracking and quantification was performed as described in Doncic et al.

(2013). Autofluorescence in each imaging channel was determined and ac-

counted for by imaging a control strain lacking the corresponding fluorescent

fusion protein. Under the conditions used here, maturation kinetics and photo-

bleaching were insignificant (Doncic et al., 2015; Schmoller et al., 2015) (see

Supplemental Experimental Procedures for details).

Mathematical Modeling

Ordinary differential equation models were simulated in MATLAB using

custom-written Runge-Kutta ODE solvers and with ode23t and ode23tb
10 Cell Systems 3, 1–12, August 24, 2016
ODE solvers for all mathematical modeling results. All mathematical models

are described in detail in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cels.2016.06.010.
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Supplementary Material 

Supplemental Experimental Procedures, related to Materials and Methods 
Wide-Field Time Lapse Microscopy 

Zeiss Observer Z1 microscope with a 63X/1.4NA oil immersion objective was used to take images 
every 6 minutes in all microscopy experiments. Multiple positions were imaged using an automated 
stage and Axiovision software, and Definite Focus hardware was used for automated focal plane 
alignment during time-lapse experiments. Media conditions and changes were controlled using a 
Cellasic microfluidics device with Y04C plates. Prior to loading, cells were grown overnight at 300C 
to OD600 < 0.1 and then sonicated for ~5-10 s at 3 W intensity. In order to avoid cell-density effects, 
all strains examined lack the Bar1 protease that cleaves extracellular mating pheromone (Ballensiefen 

and Schmitt, 1997). GFP, mCitrine, mKoκ, and mCherry expressing strains were exposed for 150 
ms, 400 ms, 750 ms, and 750 ms using Colibri 470, 505, 550, or 540-80 LED modules respectively. 
All Colibri modules were used at 25% power except for mCherry, which was used at 50% power. 
Image segmentation, tracking and quantification was conducted as described in Doncic et al, 2013. 
There is no significant photobleaching under these exposure conditions and the fusion of FAR1, 
WHI5, CLN3, and SIC1 to these fluorescent proteins has previously been shown not to affect their 
activities (Doncic et al., 2015; Schmoller et al., 2015; Yang et al., 2013). 

Measurement of fluorescent proteins  

To measure nuclear Far1-GFP and Far1-L92P-GFP concentrations, we first fit a Gaussian to the 

Whi5-mKoκ signal to find the nucleus. Since commitment to cell cycle is molecularly defined as the 
point at which ~50% of Whi5 is exported from the nucleus, Whi5 is nuclear during pheromone 
arrest and serves as a marker for both arrest and nuclear location (Doncic et al., 2011). Using Whi5 
as a marker for nuclear location, we measured the average GFP signal intensity in the nucleus. While 
this GFP signal is a proxy for Far1 levels, it needs to be corrected for cell growth to accurately 
reflect relative nuclear Far1 concentrations over longer time scales. Since cells grow during arrest, 
their z-dimension increases, which results in an increase in autofluorescence as well as a slight 
increase in the z-dimension of the nucleus. To find the size-dependent autofluorescence, we arrested 
a control strain not expressing GFP in pheromone and measured the autofluorescence signal in the 
GFP channel as cells grew. Then, we fit a linear regression to find the relationship between cell 
thickness, given by volume/area, and autofluorescence in the GFP channel. We then subtracted the 
size-dependent autofluorescence signal from the GFP signal intensity. We note that we also 
subtracted the non-cell background signal, which can vary slightly from one microfluidics plate to 
another. We then divided this background subtracted intensity signal by the cell thickness to find the 
nuclear Far1 concentration signal.  

For the other fluorescent proteins, mCitrine-Cln3-11A, Whi5-mKoκ, GFP driven by the CLB5 
promoter, and Sic1-GFP, we similarly found and subtracted the size-dependent autofluorescence in 
their respective channels by arresting each background strain in pheromone using the same exposure 
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conditions as tagged strains and finding the relation between cell size and autofluorescence at 
different cell sizes for each channel. Note that because different fluorescent channels display 
relatively different dependencies of autofluorescence on size, different linear equations were fit for 
each channel. We also note that since active and inactive fractions of Far1 cannot be distinguished in 
vivo, ‘nuclear [Far1]’ refers to the concentration of total nuclear Far1 in all experiments while it refers 
to the active fraction in the panels that refer to the model, unless otherwise indicated. 

Time scales were calculated as the time required to reach half-maximum or half-minimum of any 
observable changes that would drive cell cycle reentry. This corresponds to the time required to 
reach half-maximum volume from the start of the arrest, time required to reach half-maximum level 
for Cln3 from the start of an arrest, the time required to reach half-maximum levels for GFP 
expressed from the CLB5 promoter after promoter firing, and the time required to degrade half of 
the existing pools of Sic1 and nuclear Far1. For average traces, single cell traces were first aligned at 
the point that this change starts for each marker, i.e., at the beginning of the arrest for volume and 
Cln3, at the time of promoter firing near cell cycle reentry for the CLB5 promoter, and at the time 
of cell cycle reentry for Sic1 and Far1 proteins. Then, fluorescent values were binned based on time, 
and mean and standard error of the mean for fluorescent concentrations were calculated within each 
bin. We note that maturation kinetics of fluorophores does not significantly impact our calculation 
of time scales. This is because maturation primarily results in a delay, which does not change the 
time to reach half-maximum for a transition. While the standard deviation of the distribution of 
maturation times may be expected to slightly smoothen a transition and result in the observed 
kinetics to be slower than actual kinetics, simulations with first-order kinetics suggest that this would 
minimally affect time to half-maximum that we calculated (<3 min for even lowly expressed proteins 
(~500 molecules at the end of the transition) tagged with slow maturing fluorophores (~30 min).  

We note that for the pulse experiment shown in Figure 2, 60-minute 3 nM gaps were chosen 
because longer gaps or lower pheromone concentrations typically result in most cells reentering the 
cell cycle in the first gap. This is because the fraction of total Far1 that is phosphorylated and active 
is significantly lower at lower pheromone concentrations. 

For all experiments, only daughter cells that are born during pheromone arrest and reenter the cell 
cycle during the experiment are chosen for analysis. The number of daughter cells selected for each 
experiment varies between 15 and 120. While all our conclusions also hold for mother cells, they are 
omitted from these analyses because their arrest durations are significantly shorter due to cell type-
specific factors (Caudron and Barral, 2013; Di Talia et al., 2009).  

Derivation of analytical form of nuclear Far1 in modular and non-modular networks 

In this section, we solve for Far1 in the feedforward motif model to show how Far1 dynamics 
would differ if the feedforward motif is insulated (modular network) or not (non-modular network). 
To derive the analytical form for Far1nuc levels for a modular network (Figure S1A), we follow 
Doncic and Skotheim (2013) with minor modifications to account for reentry to cell cycle and 
enrichment of nuclear Far1 as discussed in Doncic et al (2015). If the cell is arrested, Far1 is 
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synthesized by active Ste12 at a rate ks, and Far1 has a constant half-life determined by kdg. Thus, the 
total Far1 concentration, including phosphorylated and nonphosphorylated fractions, is given by: 

![!"#!!"!]
!"

  =   𝑘!  [𝑆𝑡𝑒12]   −   𝑘!"  [𝐹𝑎𝑟1!"!].       Eq. 1 

Since phosphorylation and dephosphorylation kinetics are fast, active Ste12 is determined by 
instantaneous Fus3 kinase activity. Since Fus3 activity is in turn determined by phosphorylation 
events upstream in the MAPK pathway, we take Fus3 activity and thereby Ste12 activity to be a 
function of instantaneous extracellular pheromone concentration, p(t). Therefore,  

[𝑆𝑡𝑒12] = 𝑔 𝐹𝑢𝑠3 𝑝 𝑡 =   𝐹 𝑝 𝑡 .   So that: 

![!"#!!"!]
!"

  =   𝑘!  𝐹 𝑝 𝑡     −   𝑘!"  [𝐹𝑎𝑟1!"!],        Eq. 2 

which can be integrated to yield: 

[𝐹𝑎𝑟1!"!] = [𝐹𝑎𝑟1!]𝑒!!!".! + 𝑘!.𝐹 𝑝 𝑡! . 𝑒!!!".(!!!!)𝑑𝑡!!
! ,    Eq. 3 

where [Far10] represents the initial pool of Far1 at t = 0, which is when the cell is born and arrest 
begins.  We note that [Far10] is sufficiently high so that when it is phosphorylated and activated, it is 
able to arrest cells. At any time, only a fraction of the total Far1tot is activated by phosphorylation. At 
a much faster time-scale than synthesis and cell growth, the non-phosphorylated form of Far1 is 
phosphorylated by Fus3 at a rate kp while phosphorylated Far1 is dephosphorylated at a rate kdp, so 
that the phosphorylated form of Far1 is given by: 

![!"#!!]
!"

  =   𝑘!   [𝐹𝑎𝑟1!"!]− [𝐹𝑎𝑟1!] [𝐹𝑢𝑠3]−   𝑘!"  [𝐹𝑎𝑟1!].    Eq. 4 

We note that Fus3 is abundant and therefore unlikely to be saturated (Thomson et al., 2011). Since 
the phosphorylation kinetics of Eq. 4 are faster than the synthesis kinetics of Eq. 3, Far1p is at steady 
state on the slower synthesis time scale. At steady state, Eq. 4 yields: 

[𝐹𝑎𝑟1!] =   
  [!"#!]  

!!"
!!

  !    [!"#!]
  [𝐹𝑎𝑟1!"!].        Eq. 5 

Moreover, Far1 is transported to the nucleus at the start of the arrest and is enriched in nucleus, 
compared to the cytoplasm during arrest. We assume that Far1 nuclear transport is faster than 
synthesis so that we can represent the spatial organization of phosphorylated Far1 using a nuclear-
to-cytoplasmic ratio kn: [𝐹𝑎𝑟1!"#] = 𝑘!  [𝐹𝑎𝑟1!]. If a cell reenters the cell cycle (Whi5 
cytoplasmic), the motif no longer is functional and nuclear Far1 is completely degraded so that 
Far1nuc = 0. Incorporating this into Eqn. 3 and 5, we find: 

𝐹𝑎𝑟1!"# =
!!  [!"#! !(!) ]

!!"
!"   !  [!"#! !(!) ]

([𝐹𝑎𝑟1!]𝑒!!!".! + 𝑘!.𝐹 𝑝 𝑡! . 𝑒!!!".(!!!!)𝑑𝑡!!
! ), 𝑖𝑓  𝑊ℎ𝑖5  𝑛𝑢𝑐𝑙𝑒𝑎𝑟  

0, 𝑖𝑓  𝑊ℎ𝑖5  𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐  
   Eq. 6 
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Note that for the result shown in Figure S1B, Equation 1 is numerically solved, instead of explicitly 
integrated. Active [Fus3(p(t))] is estimated as: 

[𝐹𝑢𝑠3(𝑡)]   =    [!"#!!"#]
!!  !  !"#(!!"#!"(!(!)/!"))

,        Eq. 7 

where Kf = 1 so that pheromone concentration for half-maximum Fus3 concentration is 1 nM, 
consistent with published measurements (Figure S7A) (Yu et al., 2008). We take [Fus3max]=200 nM, 
which corresponds to ~5000 molecules per cell and is consistent with previous estimates (Maeder et 
al., 2007; Slaughter et al., 2007; Thomson et al., 2011). Then, the synthesis rate of Far1 as a function 
of pheromone is estimated as: 

𝑘!. 𝑆𝑡𝑒12(𝑡)   = 𝑘!.𝐹 𝑝 𝑡 = 𝑘!  (𝐴  +   𝐵  (1− 𝑒𝑥𝑝(−
! !
!"  !"

))),     Eq. 8 

so that Far1 synthesis is significantly increased only at high α-factor concentrations, consistent with 
previous measurements (𝐴   =   70  𝑛𝑀;   𝐵   =   130  𝑛𝑀) (Figure S7B) (Doncic and Skotheim, 2013). 

To complete the model, additional parameters were chosen as follows: [𝐹𝑎𝑟1!]   = 60  𝑛𝑀;   !!"
!!
  =

  10𝑛𝑀;   𝑘!   =   2;   𝑘!   =   0.01  𝑚𝑖𝑛!!;   𝑘!"   =   0.01  𝑚𝑖𝑛!!. 

For a modular network, Far1 is not targeted for degradation by cyclins prior to cell cycle reentry, and 
the Far1 degradation rate, kdg, is a constant low value, which is a result of the combined effect of 
dilution due to growth and the effect of constitutive (non-specific) degradation (Figure S1C).  

In a non-modular network, Far1 would be inhibited by increasing cell cycle signal (Figure S1D). To 
incorporate increasing degradation of Far1 by cell cycle inputs, kdg was modified to be a linearly 
increasing function of time instead of being set to a constant value (𝑘!"   =   𝑐  𝑡, where 𝑐 =
0.0002  𝑚𝑖𝑛!! for the simulation shown in Figure S1D,E). For both non-modular and modular 
analyses of the feedforward motif, the Far1 half-life is ln(2)/kdg (Figure S1C,F). Note that for the 
modular network, because [Far1nuc] drops to zero following cell cycle reentry, kdg→ ∞, so that 
Far11/2→  0. 

Intuitive explanation of Far1 feedforward motif model 

If the feedforward motif is a module, then its dynamics can be studied in isolation from other 
interactions in the network. Thus, we first look at what the feedforward motif model predicts in 
absence of any interacting components. In our model here, we also focus on the active nuclear pool 
of Far1 because it determines cell cycle arrest (Doncic et al., 2015). The initial jump in nuclear Far1 
when cells arrest is due to rapid nuclear import of cytoplasmic Far1, which is more stable 
throughout the cell cycle and can accumulate in S/G2/M phases despite high Cdk activity (Figure 
S1B) (Doncic et al., 2015). This initial pool of Far1 is also rapidly activated by phosphorylation, 
allowing cells not yet committed to division to quickly respond to pheromone and arrest. Nuclear 
Far1 is a relatively constant fraction of total Far1 (Doncic et al., 2015), and, as with total Far1, Fus3 
activity determines the active fraction of nuclear Far1. We consequently take the concentration of 
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the active nuclear pool to be a constant multiple of phosphorylated and activated total Far1 in this 
model. 

Phosphorylation and dephosphorylation are both rapid processes so that Fus3 and Ste12 are taken 
to be a function of the extracellular pheromone concentration, p(t), as measured in (Yu et al., 2008). 
Then, the amount of phosphorylated Far1 is determined by the total Far1, Far1tot, active Fus3, and 
Far1 phosphorylation and dephosphorylation rates, kp and kdp, respectively, so that: [𝐹𝑎𝑟1!]   =
  [!"#!!"!][!"#!]
[!"#!]!!!"/!!

. At intermediate pheromone concentrations, total Far1 slowly increases from its 

relatively high initial value to reach a constant steady state value, [Far1tot*], that balances production 
by Ste12 with Far1 degradation: [𝐹𝑎𝑟1!"!∗]   =   𝑘!  [𝑆𝑡𝑒12]/𝑘!", where ks is the Far1 synthesis rate 
and kdg is the Far1 degradation rate. Importantly, because this model does not account for any 
inhibitory cell cycle signal, Far1 activity does not gradually decrease prior to cell cycle reentry. 
Instead, cell cycle reentry is modeled as the point at which the motif no longer functions. Thus, in 
the modular analysis, Far1 half-life is constant until cell cycle reentry (Figure S1C).  

In contrast, if the feedforward motif is not a module, the cell cycle signal would influence Far1 
stability and concentration (Figure S1D). As the cells get larger during pheromone arrest, the cell 
cycle signal is expected to gradually increase, leading to increasing Far1 degradation. When this 
degradation is incorporated into the above model, Far1 follows a dramatically different trajectory 
where it gradually decreases during arrest (Figure S1E,F). Thus, if the cell cycle signal is not insulated 
from the pheromone pathway, Far1 dynamics will be very different from the modular feedforward 
motif prediction. 

Analysis of the effect of switch-like transitions on the modularity of the network comprising 
the G1/S cell cycle and pheromone pathways 

While the simplified model described above and in Figure S1 provides an intuition for how network 
modularity can impact feedforward motif dynamics, it does not explicitly model the pheromone 
pathway cell cycle interface. We therefore constructed a slightly more complex model that allows us 
to analyze how parameters affecting the interface between dynamic cell cycle inputs and the 
feedforward motif determine network modularity. We emphasize that the purpose of this model is 
not to recapitulate the accurate dynamics for G1/S network or pheromone pathway but rather to 
investigate the conditions for network modularity. That is why many cell cycle components are 
omitted in this model, and many complexities such as the compartmentalization of Far1 into 
cytoplasmic and nuclear pools and the separate behavior of these pools due to nuclear localization 
of cyclins are greatly simplified. For more molecularly complete models we refer the interested 
reader to studies focusing on either the complete cell cycle or pheromone pathways (Kofahl and 
Klipp, 2004; Kraikivski et al., 2015; Tyson and Novák, 2015; Wang et al., 2006; Yao et al., 2008). 

The ODE model adds a simplified cell cycle pathway model to the feedforward motif (see Results 
and Figure 4 for an intuitive explanation of the model). Volume is taken to be increasing slowly and 
linearly, as measured in Figure 3A,B: 
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!(!"#$%&)
!"

= 𝑘!           Eq. 9 

This linear increase in size is transmitted to Cln3, and Cln3 also gradually increases, but with a 
saturation kinetics that is similar to that measured in Figure 3C,D. 

![!"#!]
!"

= !!    !"#$%&
!!  !  !"#$%&

− 𝑑!  [𝐶𝑙𝑛3],         Eq. 10 

where k2 is a scaling constant for maximum Cln3 synthesis rate, Kv is the volume required to reach 
half-maximum Cln3 synthesis rate, and d1 is the degradation rate of Cln3. Here and also for other 
cyclins, cyclin-Cdk complex formations are not explicitly modeled since these interactions are rapid 
and that Cdk1, the only Cdk in yeast, is in excess (Cross et al., 2002). While Cln3 drives cell-cycle 
reentry primarily by inhibiting Whi5 (Costanzo et al., 2004; de Bruin et al., 2004), the model does not 
explicitly consider this interaction since Whi5 is relatively constant in pheromone-arrested cells at 
intermediate pheromone concentrations (Figure 3E,F). Furthermore, Whi5 inactivation results in 
Cln1 and Cln2 activation, which is also not explicitly modeled here because Cln1 and Cln2 were 
shown to have little effect on the kinetics of cell cycle reentry from pheromone arrest (Doncic and 
Skotheim, 2013). On the other hand, B-type cyclins affect reentry kinetics and Clb5 has been shown 
to target Far1 for degradation, indicating that it is the activation of B-type cyclins that drive the 
dismantling of the feedforward motif (Doncic et al., 2015). We therefore construct a simplified 
model in which Cln3 activates B-type cyclin expression with Michaelis-Menten-type kinetics, and B-
type cyclins can also activate their own expression, either gradually or sharply. Clb5/6 denotes the 
cyclin-Cdk complexes that are not bound to the inhibitor proteins Sic1 and Far1. Cyclin-Cdk 
complexes bound to inhibitors are denoted by FC. Assuming that the rate at which cyclins bind Cdk 
is fast, the amount of active cyclin-Cdk complexes is given by: 

! !"#!/!
!"

= !!     !"#!
!!  !   !"#!

+ !!     !"#!/! !

!!!!   !"#!/! ! − 𝑘! 𝐹𝑎𝑟1! 𝐶𝑙𝑏5/6   

                                        +𝑘!   𝐹𝐶 +   𝑘!  [𝐹𝐶]− 𝑘!"  [𝐶𝑙𝑏5/6],      Eq. 11 

where k3 and k4 are the scaling constants for the maximum activation rate of B-type cyclins by Cln3 
and by themselves, respectively, KB is the B-type cyclin concentration required to reach half-
maximum self-activation rate, KG is the Cln3 concentration required to reach half-maximum B-type 
cyclin activation rate due to Cln3, and kdg represents the constitutive degradation rate of Clb5/6 
(inverse half-life). Here, it must be noted that the switch-like nature of Clb5/6 auto-activation 
embodies all the positive feedbacks between Cln3 and Clb5/6, including that potentially arising from 
Cln1 and Cln2 and B-type cyclin activity promoting the degradation of the B-type cyclin inhibitor 
Sic1 (Kõivomägi et al., 2011; Skotheim et al., 2008). Also, since these differential equations describe the 
time-derivatives of a protein concentration, the second term in Eqn. 11 does not technically 
correspond to the input-output relation that a Hill equation is often used to describe. However, the 
resulting behavior is the same. For increasing n, Clb5/6 is increasingly switch-like. We assume that 
Far1 and Clb5/6 interact with mass action kinetics. They form an inactive complex, FC, at a rate 
k5[Far1p][Clb5/6]. In turn, FC can separate into Far1p and Clb5/6 at a relatively small rate k6, or FC 
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can separate into active Clb5/6 with Far1 being degraded at a rate of k7, or FC can separate into 
Far1p with Clb5/6 being degraded at a rate of k8. Thus, the rate of change of the inactive complex 
FC is given by: 

![!"]
!"

= 𝑘!  𝐹𝑎𝑟1!  𝐶𝑙𝑏5/6−   𝑘!  𝐹𝐶 −   𝑘!  𝐹𝐶 − 𝑘!  𝐹𝐶 − 𝑘!"  𝐹𝐶    Eq. 12 

Since phosphorylation and dephosphorylation kinetics are taken to be much faster than the 
dynamics simulated in this ODE model, Fus3 and Ste12 activity is taken to be at steady state so that 
their levels are functions of only extracellular pheromone concentration and given by Eqns. 6 and 7, 
respectively as in the motif analysis above. Since phosphorylated Far1 is a fraction of total Far1 and 
is determined by current Fus3 concentration, we also assume that only phosphorylated Far1 can 
interact with Clb5/6 and use Eqn. 1, as in the motif analysis, to determine changes in total Far1 
concentration. Then, phosphorylated and nuclear Far1 is the same as for the motif analysis (see Eq. 
3) except for the Far1-Clb5/6 interaction terms. Thus: 

𝑑 𝐹𝑎𝑟1!
𝑑𝑡 = 𝑘! [𝐹𝑎𝑟1!"!]− [𝐹𝑎𝑟1!] 𝐹𝑢𝑠3 −   𝑘!" 𝐹𝑎𝑟1!   

                                              −𝑘! 𝐹𝑎𝑟1! 𝐶𝑙𝑏5/6 + (𝑘! + 𝑘!)[𝐹𝐶]− 𝑘!"𝐹𝑎𝑟1!    Eq. 13 
𝐹𝑎𝑟1!"# = 𝑘!  𝐹𝑎𝑟1! .             Eq. 14 

Here, we note that we did not include the effect of inhibition of MAPK scaffold protein Ste5 by 
Cdk activity because the dissociation of Ste5 from the plasma membrane occurs after nuclear Far1 is 
degraded (Doncic et al., 2011; Garrenton et al., 2009; Strickfaden et al., 2007). We also note that we 
have previously measured the median half-life of Far1 in pheromone-arrested cells and found it to 
be 100 minutes (Doncic and Skotheim, 2013), on the same time scale as dilution due to cell growth 
when cells are initially arrested. Thus, when cells are first arrested, both dilution and degradation 
contribute to decreasing the concentration of Far1. However, as cells increase in size during arrest, 
the amount of time to double cell mass increases in proportion to the current size because of the 
linear growth. Thus, after ~100 minutes of arrest, when cells have doubled in size, the effect of 
dilution will be reduced by a factor of two and the effect of degradation will increasingly dominate. 
To simplify the model, we use a single exponential term for degradation to reflect loss of Far1 in 
Eqs. 1,2, 6 and 13. Other variables in the model are treated similarly.  

As discussed in the main text, instead of trying to fit parameters and initial conditions to limited 
data, we choose parameters expected to be the correct order-of-magnitude based on our knowledge 
of cellular reaction rates. This allows us to gain a qualitative understanding of how different 
reactions underlie network modularity. All initial conditions and parameter values are listed in 
Supplementary Table S1 and S2.  

Sensitivity analysis 

To determine whether the deviation of Far1 dynamics from the idealized motif dynamics is sensitive 
to parameter values, we modified each parameter separately by randomly drawing 100 samples from 
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a Gaussian distribution with mean equal to the initial parameter value, and standard deviation equal 
to 1/3 of the initial parameter value. We found that only 4 parameters significantly affected the 
model deviation from the result predicted by an isolated feedforward motif model. These parameters 
were the switch parameter n, the B-type cyclin required to reach half-maximum self-activation rate 
KB, Far1 degradation rate from the inactive complex FC k7, and Far1 phosphorylation rate kp (Figure 
S5). 

Note of the relationship between growth rate and modularity 

Modularity is most likely unaffected by cell growth in yeast because most proteins are produced in 
proportion to total protein synthesis so that their concentrations are the same in big and small cells 
(Newman et al., 2006). For example, we previously found that the Far1 synthesis rate was relatively 
constant over a 2-3 hour cell cycle arrest in constant pheromone concentration (Doncic and 
Skotheim, 2013). This is consistent with the notion that the regulators of Far1 synthesis, Ste12, 
Dig1, and Dig2, remain at constant concentration as cells grow so that all their activities can be 
subsumed into a single parameter characterizing pheromone-dependent Ste12 activity. In addition, 
the relative amount of expression from most yeast promoters was shown to be independent of cell 
growth rate in a variety of conditions (Keren et al., 2013). This results in most proteins remaining at 
constant concentration in a variety of conditions without feedback control, which is rare in budding 
yeast (Springer et al., 2010; Tang and Amon, 2013). Thus, in a wide variety of conditions, in large 
and small cells, most signaling protein concentrations are expected to remain nearly constant so that 
most signaling modules will respond similarly. 
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Supplementary Tables 
Table S1: Initial conditions for simulations shown in Figure 4, S3-S5. p is the extracellular 
pheromone concentration, which is constant in these simulations, unless otherwise indicated.  

Variable Description Initial Condition Units 
Fus3 Active protein 200/(1  +   𝑒𝑥𝑝(−𝑙𝑜𝑔!" 𝑝 )) nM 
Ste12 Active protein 70+   130  (1− 𝑒𝑥𝑝(−𝑝/10)) nM 
Far1tot Total protein 60   nM 
Far1p Phosphorylated protein 0   nM 
Volume Cell volume 40   fl 
Cln3 Active protein 1   nM 
Clb5/6 Active protein 0   nM 
FC Inactive Far1-Clb5/6 complex 0   nM 

 

Table S2: Parameters for simulations shown in Figure 4, S3-S5 

Rate Description Value Units 

ks Far1 Ste12-dependent synthesis rate  0.01 min-1 

kdg Far1 constitutive degradation rate 0.01 min-1 
kp Far1 phosphorylation rate by Fus3 0.005 nM-1 min-1 
kdp Far1 constitutive dephosphorylation rate 0.05 min-1 
kn Far1 nuclear-to-cytoplasmic ratio 2  
k1 Volume increase rate 0.5 fl min-1 
k2 Scaling constant for maximum Cln3 synthesis rate 1.0 nM-1 min-1 
KV Volume to reach half-maximum Cln3 synthesis rate 100 fl 
d1 Cln3 degradation rate 0.1 min-1 
k3 Scaling constant for maximum activation rate of B-type 

cyclin synthesis by Cln3 
2 nM-1 min-1 

k4 Scaling constant for maximum activation rate of B-type 
cyclins by B-type cyclins (positive feedback) 

25 nM-1 min-1 

KG Cln3 concentration required to reach half-maximum B-
type cyclin activation rate due to Cln3 

10 nM 

KB Clb5/6 concentration required to reach half-maximum 
self-activation rate  

5 nM 

n Switch-parameter 1-8  
k5 Rate of inactive [FC] formation 0.02 nM-1 min-1 
k6 Rate of [FC] break-up into [Far1p] and [Clb5/6] 0.01 min-1 
k7 Far1 degradation rate from [FC] 0.05 min-1 
k8 Clb5/6 degradation rate from [FC] 0.005 min-1 
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Table S3: Strain list, related to Materials and Methods 

All strains are derived from W303 using standard methods.  

Name Genotype Source 
OA040 MATa bar1::URA3 WHI5-mKoκ­TRP1 far1::kanMX-­‐FAR1pr-­‐FAR1-GFP-­‐

LEU2 ADE2 
(Doncic et al., 2015) 

OA042 MATa bar1::URA3 WHI5-mKoκ-TRP1 far1::kanMX-12xFAR1pr-FAR1(L92P)-
GFP-LEU2  ADE2 

(Doncic et al., 2015) 

OA043 MATa bar1::URA3 WHI5-mKoκ­TRP1 far1::kanMX-­‐FAR1pr-­‐FAR1-GFP-­‐
LEU2 MET3pr-CLN3-HIS ADE2 

This study 

OA044 MATa bar1::URA3 WHI5-mKoκ-TRP1 far1::kanMX-12xFAR1pr-FAR1(L92P)-
GFP-LEU2 MET3pr-CLN3-HIS ADE2 

This study 

OA064 MATa bar1::URA3 cln3::mCitrine-CLN3-11A-natMX6 ADE2 This study 
AD30-17c MATa bar1::natMX6 MET3pr-CLN2-TRP CLB5pr-GFP-URA WHI5-GFP-

kanMX6 
This study 

RV200 MATa bar1::HISG sic1::SIC1-GFP-kanMX6 WHI5-mCherry-SpHIS5 Rainis Venta 
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Supplementary Figures 

 
Figure S1: Far1 dynamics suggests that the network comprising the G1/S cell cycle and pheromone 
pathways is modular, related to Figure 2 

(A-C) Nuclear Far1 dynamics predicted by an isolated analysis of the feedforward motif. In the absence of 
any cell cycle signals, Far1 level would be determined solely by the feedforward motif. Because inhibition of 
Far1 by gradually increasing cell cycle inputs is ignored until cell cycle reentry, Far1 half-life is constant until 
cell cycle reentry (C), at which point it is instantly degraded.  
(D-F) Nuclear Far1 dynamics predicted by a non-modular model in which the gradually increasing cell cycle 
inputs lead to a gradual decrease in Far1 half-life. In this simulation, nuclear Far1 half-life is a monotonically 
decreasing function of time (F).  
(G-H) Nuclear Far1 concentrations were measured in single FAR1-GFP cells exposed to a step-increase 
pheromone from 0 to 3 nM. (G) Nuclear Far1 concentration trace for an example cell, and (H) mean nuclear 
Far1 after all traces were aligned at cell cycle reentry and cell-specific Far1 background was subtracted. While 
the non-modular model predicted a gradual decrease of Far1 during arrest, the nuclear Far1 concentration 
slightly increased during arrest before its rapid degradation upon cell cycle reentry. Shaded intervals indicate 
standard error of the mean. 
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Figure S2: Whi5 concentration can increase at saturating pheromone concentrations, related 
to Figure 3. 

(A) Mean volume and associated standard error for single cells aligned at the start of a 12nM pheromone 
arrest. Volume increase is slower at higher pheromone concentrations; compare with the first 2 hours of 
arrest in Figure 3B. 
(B) Mean concentration and associated standard error for the cell cycle inhibitor Whi5-mKoκ for cells 
arrested in 12nM pheromone. Whi5 concentration increased in cells exposed to 12 nM pheromone; compare 
with the first 2 hours of arrest in Figure 3F. 
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Figure S3: The kinetics of different proteins in the model presented in Figure 4.  

(A-F) Simulation results for switch parameter n=6, pheromone p=3 nM. Initial conditions and 
parameters are as shown in Table S1 and Table S2 respectively. 

(G) Nuclear Far1 degradation rate during the simulation. The sharp increase is due to Clb5/6 
activity. 
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Figure S4: The effect of pheromone concentration on reentry timing, related to Figure 4. 
Switch parameter n = 6. Initial conditions and parameters are as shown in Table S1 and Table S2 
respectively. Pheromone concentration was constant during the simulation.  
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Figure S5: Parameter sensitivity analysis, related to Figure 4. Simulations were performed as in 
Figure 4, but with varying parameters. For all simulations except those shown in (B) and (F), the 
switch parameter n = 6 and initial conditions are given in Table S1. With the exception of the 
indicated varied parameter, the parameters are as shown in Table S2 respectively. A set of values for 
each parameter was selected by randomly drawing 100 samples from a Gaussian distribution with 
mean equal to the initial parameter value, and standard deviation equal to 1/3 of the initial 
parameter value. Then, for each value in the set, a simulation was performed and the deviation from 
the isolated feedforward model calculated.  

(A-D) Deviation from the isolated feedforward model as a function of the 4 sensitive parameters. 

(E-H) Example traces indicating how model results deviate from the isolated feedforward model 
for the indicated sensitive parameters.  

(I-P) Comparable sensitivity analysis as in (A-H) for 4 parameters that do not significantly impact 
the deviation from the isolated feedforward model. When a parameter that affected the isolated 
feedforward model was varied, the feedforward model was also simulated using the varied 
parameter. Similar results were obtained for the remaining 8 parameters that are not shown here.  
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Figure S6: Percentage of Far1 degraded by a Cln3 pulse, related to Figure 5. For the 
experiment shown in Figure 5B, but instead of mean Far1 degradation as in Figure 5C, percentage 
of Far1 degraded by the Cln3 pulse is calculated. The error bars denote the standard error of the 
mean for three biological replicate experiments (p < 0.05). 
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Figure S7: Functions showing how Fus3 and Ste12 activity depends on pheromone 
concentration, related to Supplementary Material and Figure 4. Plots of equations 7 and 8 for 
Fus3 (A) and Ste12 (B) respectively.  
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